RESUMEN
Despite advancements in utilizing genetic markers to enhance acute myeloid leukaemia (AML) outcome prediction, significant disease heterogeneity persists, hindering clinical management. To refine survival predictions, we assessed the transcriptome of non-acute promyelocytic leukaemia chemotherapy-treated AML patients from five cohorts (n = 975). This led to the identification of a 4-gene prognostic index (4-PI) comprising CYP2E1, DHCR7, IL2RA and SQLE. The 4-PI effectively stratified patients into risk categories, with the high 4-PI group exhibiting TP53 mutations and cholesterol biosynthesis signatures. Single-cell RNA sequencing revealed enrichment for leukaemia stem cell signatures in high 4-PI cells. Validation across three cohorts (n = 671), including one with childhood AML, demonstrated the reproducibility and clinical utility of the 4-PI, even using cost-effective techniques like real-time quantitative polymerase chain reaction. Comparative analysis with 56 established prognostic indexes revealed the superior performance of the 4-PI, highlighting its potential to enhance AML risk stratification. Finally, the 4-PI demonstrated to be potential marker to reclassified patients from the intermediate ELN2017 category to the adverse category. In conclusion, the 4-PI emerges as a robust and straightforward prognostic tool to improve survival prediction in AML patients.
Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/diagnóstico , Masculino , Femenino , Pronóstico , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Adulto , Anciano , Transcriptoma , Adolescente , NiñoRESUMEN
Limited data are available on breakthrough COVID-19 in patients with hematologic malignancy (HM) after anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. Adult patients with HM, ≥1 dose of anti-SARS-CoV-2 vaccine, and breakthrough COVID-19 between January 2021 and March 2022 were analyzed. A total of 1548 cases were included, mainly lymphoid malignancies (1181 cases, 76%). After viral sequencing in 753 cases (49%), the Omicron variant was prevalent (517, 68.7%). Most of the patients received ≤2 vaccine doses before COVID-19 (1419, 91%), mostly mRNA-based (1377, 89%). Overall, 906 patients (59%) received COVID-19-specific treatment. After 30-day follow-up from COVID-19 diagnosis, 143 patients (9%) died. The mortality rate in patients with the Omicron variant was 7.9%, comparable to other variants, with a significantly lower 30-day mortality rate than in the prevaccine era (31%). In the univariable analysis, older age (P < .001), active HM (P < .001), and severe and critical COVID-19 (P = .007 and P < .001, respectively) were associated with mortality. Conversely, patients receiving monoclonal antibodies, even for severe or critical COVID-19, had a lower mortality rate (P < .001). In the multivariable model, older age, active disease, critical COVID-19, and 2-3 comorbidities were correlated with a higher mortality, whereas monoclonal antibody administration, alone (P < .001) or combined with antivirals (P = .009), was protective. Although mortality is significantly lower than in the prevaccination era, breakthrough COVID-19 in HM is still associated with considerable mortality. Death rate was lower in patients who received monoclonal antibodies, alone or in combination with antivirals.
Asunto(s)
COVID-19 , Neoplasias Hematológicas , Adulto , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Prueba de COVID-19 , Neoplasias Hematológicas/complicaciones , Neoplasias Hematológicas/terapia , Anticuerpos Monoclonales , Antivirales , Anticuerpos AntiviralesRESUMEN
Pemphigus vulgaris (PV) is a rare autoimmune bullous disease characterized by blistering of the skin and mucosa owing to the presence of autoantibodies against the desmosome proteins desmoglein 3 and occasionally in conjunction with desmoglein 1. Fundamental research into the pathogenesis of PV has revolutionized its treatment and outcome with rituximab, a B-cell-depleting therapy. The critical contribution of B cells to the pathogenesis of pemphigus is well accepted. However, the exact pathomechanism, mechanisms of onset, disease course and relapse remain unclear. In this narrative review, we provide an overview of the fundamental research progress that has unfolded over the past few centuries to give rise to current and emerging therapies. Furthermore, we summarize the multifaceted roles of B cells in PV, including their development, maturation and antibody activity. Finally, we explored how these various aspects of B-cell function contribute to disease pathogenesis and pave the way for innovative therapeutic interventions.
Pemphigus vulgaris (PV) is a rare autoimmune disease, in which the immune system attacks itself and causes blisters on the skin and inside the mouth. This happens because the body mistakenly attacks specific proteins (called desmosomes) that keep the skin together. Globally, this disease affects anywhere from 0.5 to 16.1 people per million, often older than 50â years. PV is life-threatening when left untreated. From carrying out research as far back as the 1700s, we have made significant strides in understanding PV. For example, research has led to a new treatment with the antibody rituximab, which works by eliminating the cells of the immune system that attack desmosomes (called B cells). However, after therapy is completed, the disease often returns because the same troublesome B cells reappear. There are multiple places that are involved when the body attacks desmosomes. The problems range from the bone marrow where the B cells are made and selected to the ways these cells change as they move around the body. It takes a rare combination of these changes to switch from a normal immune system to one that causes PV. Clinicians and researchers are currently developing new treatment options to better target this skin disease. We want to emphasize that research should continue to uncover how the disease works because a better understanding promotes the development of new therapies, and perhaps even a cure. This is vital, because PV can significantly lower the quality of life of people living with this skin disease.
Asunto(s)
Linfocitos B , Pénfigo , Rituximab , Pénfigo/inmunología , Pénfigo/tratamiento farmacológico , Pénfigo/terapia , Humanos , Linfocitos B/inmunología , Rituximab/uso terapéutico , Autoanticuerpos/inmunología , Tolerancia Inmunológica/inmunologíaRESUMEN
The treatment of older patients with acute myeloid leukemia (AML) considered unfit for receiving intensive chemotherapy is challenging. Based on the hypothesis that addition of the broad tyrosine kinase inhibitor (TKI) midostaurin could improve the response to hypomethylating agents, irrespective of FLT3 gene mutational status, we conducted a randomized phase II multicenter study to assess the tolerability and efficacy of the addition of midostaurin to a 10-day schedule of decitabine in unfit (i.e. Hematopoietic Cell Transplantation Comorbidity Index (HCT-CI) ≥ 3) AML and higher risk myelodysplasia (MDS) patients (HOVON155 trial). In total, 140 eligible patients were randomly (1:1) assigned to treatment with 10-days of decitabine alone (N = 70) or combined with midostaurin (50 mg bid;starting the day following the last dose of decitabine), (N = 70). Addition of midostaurin was well tolerated and the number of AEs was comparable for both treatment arms. Early death rates (< 30 days) were similar as well (10%). In the decitabine plus midostaurin arm 24% reached CR/CRi, the median OS was 4.8 months and 1-yrs OS was 31% which compared with 34% CR/CRi, median OS of 7.4 months and 1-yrs OS of 37% for the decitabine alone group (NS). Thus, while the addition of midostaurin appears safe, it does not enhance therapeutic efficacy of decitabine in unfit AML patients.
RESUMEN
OBJECTIVE: During intensive hematologic care, patients are exposed to high-dose chemotherapy, corticosteroids, immunosuppressants, and total parenteral nutrition. Combined with physiologic stress and increased release of cytokines and hormones, this can lead to dysglycemia, which is associated with adverse clinical outcomes. This prospective study aimed to investigate continuous glucose monitoring (CGM) to identify dysglycemia during intensive hematologic care. METHODS: Patients receiving chimeric antigen receptor T-cell therapy or allogeneic or autologous stem cell transplantation were eligible. Throughout the study, glucose levels were concurrently monitored using CGM and point-of-care (POC) glucose measurements in 60 patients (71% male, median age of 64 [interquartile range, 58-68] years, and 10% with diabetes). RESULTS: Hyperglycemia (glucose level, >10 mmol/L) was prevalent in 93% of patients, of whom 90% had no history of diabetes. Severe hyperglycemia (glucose level, >13.1 mmol/L) was present in 38%. Additionally, hyperglycemia was associated with prolonged hospitalization in patients undergoing chimeric antigen receptor T-cell treatment (ß, 0.19; 95% CI, 0.04-0.35) and autologous stem cell transplantation (ß, 0.16; 95% CI, 0.01-0.32). CGM outperformed POC in detecting hyperglycemia (>10 mmol/L: 1060 vs 124, detected 2.8 [interquartile range, 0.7-4.0]) hours earlier. The mean absolute relative difference between CGM and POC was 21.5%, with 99.8% of measurements in the clinical acceptable zone A + B of the Clarke error grid. CONCLUSION: These findings emphasize the potential and importance of glucose monitoring with CGM for improved and earlier detection of hyperglycemia, in this patient population, which seems feasible. Our results suggest a need for further studies into CGM as method to optimize glucose levels, which could improve outcomes in patients receiving intensive hematologic care.
RESUMEN
Although a growing body of evidence demonstrates that altered mtDNA content (mtDNAc) has clinical implications in several types of solid tumours, its prognostic relevance in acute promyelocytic leukaemia (APL) patients remains largely unknown. Here, we show that patients with higher-than-normal mtDNAc had better outcomes regardless of tumour burden. These results were more evident in patients with low-risk of relapse. The multivariate Cox proportional hazard model demonstrated that high mtDNAc was independently associated with a decreased cumulative incidence of relapse. Altogether, our data highlights the possible role of mitochondrial metabolism in APL patients treated with ATRA.
Asunto(s)
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/genética , Tretinoina/uso terapéutico , ADN Mitocondrial/genética , Relevancia Clínica , Recurrencia Local de Neoplasia/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resultado del TratamientoRESUMEN
Expression of the anti-apoptotic B-cell lymphoma 2 (BCL-2) protein in patients with diffuse large B-cell lymphoma (DLBCL) strongly correlates with resistance to standard therapy with cyclophosphamide, vincristine, doxorubicin, prednisolone, and rituximab (R-CHOP). Although studies focus mainly on the contribution of BCL-2, here we also investigate the contribution of other anti-apoptotic proteins to CHOP-therapy resistance in DLBCL. Functional dynamic BCL-2 homology (BH)3 profiling was applied to DLBCL cell lines upon CHOP treatment or single CHOP compounds. Cell-specific anti-apoptotic dependencies were validated with corresponding BH3-mimetics. We found high expression of anti-apoptotic BCL-2, MCL-1, and BCL-XL in DLBCL cell lines and patients. CHOP treatment resulted in both enhanced and altered anti-apoptotic dependency. Enhanced sensitivity to different BH3-mimetics after CHOP treatment was confirmed in specific cell lines, indicating heterogeneity of CHOP-induced resistance in DLBCL. Analysis of single CHOP compounds demonstrated that similar changes could also be induced by doxorubicin or vincristine, providing evidence for clinical combination therapies of doxorubicin or vincristine with BH3-mimetics in DLBCL. In conclusion, we show for the first time that CHOP treatment induces increased anti-apoptotic dependency on MCL-1 and BCL-XL, and not just BCL-2. These results provide new perspectives for the treatment of CHOP-resistant DLBCL and underline the potential of BH3 profiling in predicting therapy outcomes.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína bcl-X/genética , Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Proteína 11 Similar a Bcl2/genética , Proteína 11 Similar a Bcl2/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ciclofosfamida/uso terapéutico , Doxorrubicina/uso terapéutico , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Prednisona/uso terapéutico , Pronóstico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Pirimidinas/farmacología , Rituximab/uso terapéutico , Transducción de Señal , Sulfonamidas/farmacología , Tiofenos/farmacología , Resultado del Tratamiento , Vincristina/uso terapéutico , Proteína bcl-X/antagonistas & inhibidores , Proteína bcl-X/metabolismoAsunto(s)
Arsenicales , Leucemia Promielocítica Aguda , Protocolos de Quimioterapia Combinada Antineoplásica , Trióxido de Arsénico/efectos adversos , Arsenicales/uso terapéutico , Médula Ósea , Humanos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Necrosis , Tretinoina/efectos adversosRESUMEN
Hematopoietic transcription factors are involved in chromosomal translocations, which generate fusion proteins contributing to leukemia pathogenesis. Analysis of patient's primary leukemia blasts revealed that those carrying the t(8;21) generating AML1/ETO, the most common acute myeloid leukemia-associated fusion protein, display low levels of a microRNA-223 (miR-223), a regulator of myelopoiesis. Here, we show that miR-223 is a direct transcriptional target of AML1/ETO. By recruiting chromatin remodeling enzymes at an AML1-binding site on the pre-miR-223 gene, AML1/ETO induces heterochromatic silencing of miR-223. Ectopic miR-223 expression, RNAi against AML1/ETO, or demethylating treatment enhances miR-223 levels and restores cell differentiation. Here, we identify an additional action for a leukemia fusion protein linking the epigenetic silencing of a microRNA locus to the differentiation block of leukemia.
Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Silenciador del Gen , Leucemia/genética , MicroARNs/genética , Proteínas Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología , ARN Mensajero/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Línea Celular Tumoral , Células HL-60 , Humanos , Cariotipificación , MicroARNs/fisiología , Modelos Biológicos , Mielopoyesis , Proteína 1 Compañera de Translocación de RUNX1 , Activación TranscripcionalRESUMEN
BACKGROUND: VISTA is a well-known immune checkpoint in T cell biology, but its role in innate immunity is less established. Here, we investigated the role of VISTA on anticancer macrophage immunity, with a focus on phagocytosis, macrophage polarization and concomitant T cell activation. METHODS: Macrophages, differentiated from VISTA overexpressed THP-1 cells and cord blood CD34+ cell-derived monocytes, were used in phagocytosis assay using B lymphoma target cells opsonized with Rituximab. PBMC-derived macrophages were used to assess the correlation between phagocytosis and VISTA expression. qRT-PCR, flow cytometry, and enzyme-linked immunosorbent assay were performed to analyze the impact of VISTA on other checkpoints and M1/M2-like macrophage biology. Additionally, flow cytometry was used to assess the frequency of CD14+ monocytes expressing VISTA in PBMCs from 65 lymphoma patients and 37 healthy donors. RESULTS: Ectopic expression of VISTA in the monocytic model cell line THP-1 or in primary monocytes triggered differentiation towards the macrophage lineage, with a marked increase in M2-like macrophage-related gene expression and decrease in M1-like macrophage-related gene expression. VISTA expression in THP-1 and monocyte-derived macrophages strongly downregulated expression of SIRPα, a prominent 'don't eat me' signal, and augmented phagocytic activity of macrophages against cancer cells. Intriguingly, expression of VISTA's extracellular domain alone sufficed to trigger phagocytosis in â¼ 50% of cell lines, with those cell lines also directly binding to recombinant human VISTA, indicating ligand-dependent and -independent mechanisms. Endogenous VISTA expression was predominantly higher in M2-like macrophages compared to M0- or M1-like macrophages, with a positive correlation observed between VISTA expression in M2c macrophages and their phagocytic activity. VISTA-expressing macrophages demonstrated a unique cytokine profile, characterized by reduced IL-1ß and elevated IL-10 secretion. Furthermore, VISTA interacted with MHC-I and downregulated its surface expression, leading to diminished T cell activation. Notably, VISTA surface expression was identified in monocytes from all lymphoma patients but was less prevalent in healthy donors. CONCLUSIONS: Collectively, VISTA expression associates with and drives M2-like activation of macrophages with a high phagocytic capacity yet a decrease in antigen presentation capability to T cells. Therefore, VISTA is a negative immune checkpoint regulator in macrophage-mediated immune suppression.
RESUMEN
Since the beginning of the COVID-19 pandemic, there has been an overall improvement in patient mortality. However, haematological malignancy patients continue to experience significant impacts from COVID-19, including high rates of hospitalization, intensive care unit (ICU) admissions, and mortality. In comparison to other haematological malignancy patients, individuals with chronic myeloid leukemia (CML) generally have better prognosis. This study, conducted using a large haematological malignancy patient database (EPICOVIDEHA), demonstrated that the majority of CML patients experienced mild infections. The decline in severe and critical infections over the years can largely be attributed to the widespread administration of vaccinations and the positive response they elicited. Notably, the mortality rate among CML patients was low and exhibited a downward trend in subsequent years. Importantly, our analysis provided confirmation of the effectiveness of vaccinations in CML patients.
Asunto(s)
COVID-19 , Neoplasias Hematológicas , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Pandemias , Leucemia Mielógena Crónica BCR-ABL Positiva/epidemiología , HospitalizaciónRESUMEN
Background: The COVID-19 pandemic heightened risks for individuals with hematological malignancies due to compromised immune systems, leading to more severe outcomes and increased mortality. While interventions like vaccines, targeted antivirals, and monoclonal antibodies have been effective for the general population, their benefits for these patients may not be as pronounced. Methods: The EPICOVIDEHA registry (National Clinical Trials Identifier, NCT04733729) gathers COVID-19 data from hematological malignancy patients since the pandemic's start worldwide. It spans various global locations, allowing comprehensive analysis over the first three years (2020-2022). Findings: The EPICOVIDEHA registry collected data from January 2020 to December 2022, involving 8767 COVID-19 cases in hematological malignancy patients from 152 centers across 41 countries, with 42% being female. Over this period, there was a significant reduction in critical infections and an overall decrease in mortality from 29% to 4%. However, hospitalization, particularly in the ICU, remained associated with higher mortality rates. Factors contributing to increased mortality included age, multiple comorbidities, active malignancy at COVID-19 onset, pulmonary symptoms, and hospitalization. On the positive side, vaccination with one to two doses or three or more doses, as well as encountering COVID-19 in 2022, were associated with improved survival. Interpretation: Patients with hematological malignancies still face elevated risks, despite reductions in critical infections and overall mortality rates over time. Hospitalization, especially in ICUs, remains a significant concern. The study underscores the importance of vaccination and the timing of COVID-19 exposure in 2022 for enhanced survival in this patient group. Ongoing monitoring and targeted interventions are essential to support this vulnerable population, emphasizing the critical role of timely diagnosis and prompt treatment in preventing severe COVID-19 cases. Funding: Not applicable.
RESUMEN
Acute myeloid leukemia (AML) is a malignancy still associated with poor survival rates, among others, due to frequent occurrence of therapy-resistant relapse after standard-of-care treatment with cytarabine (AraC). AraC triggers apoptotic cell death, a type of cell death to which AML cells often become resistant. Therefore, therapeutic options that trigger an alternate type of cell death are of particular interest. We previously identified that the glycan-binding protein Galectin-9 (Gal-9) has tumor-selective and non-apoptotic cytotoxicity towards various types of cancer, which depended on autophagy inhibition. Thus, Gal-9 could be of therapeutic interest for (AraC-resistant) AML. In the current study, treatment with Gal-9 was cytotoxic for AML cells, including for CD34+ patient-derived AML stem cells, but not for healthy cord blood-derived CD34+ stem cells. This Gal-9-mediated cytotoxicity did not rely on apoptosis but was negatively associated with autophagic flux. Importantly, both AraC-sensitive and -resistant AML cell lines, as well as AML patient samples, were sensitive to single-agent treatment with Gal-9. Additionally, Gal-9 potentiated the cytotoxic effect of DNA demethylase inhibitor Azacytidine (Aza), a drug that is clinically used for patients that are not eligible for intensive AraC treatment. Thus, Gal-9 is a potential therapeutic agent for the treatment of AML, including AraC-resistant AML, by inducing caspase-independent cell death.
RESUMEN
We characterize the metabolic background in distinct Acute Myeloid Leukemias (AMLs), by comparing the metabolism of primary AML blasts isolated at diagnosis with that of normal hematopoietic maturing progenitors, using the Seahorse XF Agilent. Leukemic cells feature lower spare respiratory (SRC) and glycolytic capacities as compared to hematopoietic precursors (i.e. day 7, promyelocytes). According with Proton Leak (PL) values, AML blasts can be grouped in two well defined populations. The AML group with blasts presenting high PL or high basal OXPHOS plus high SRC levels had shorter overall survival time and significantly overexpressed myeloid cell leukemia 1 (MCL1) protein. We demonstrate that MCL1 directly binds to Hexokinase 2 (HK2) on the outer mitochondrial membrane (OMM). Overall, these results suggest that high PL and high SRC plus high basal OXPHOS levels at disease onset, arguably with the concourse of MCL1/HK2 action, are significantly linked with shorter overall survival time in AML. Our data describe a new function for MCL1 protein in AMLs' cells: by forming a complex with HK2, MCL1 co-localizes to VDAC on the OMM, thus inducing glycolysis and OXPHOS, ultimately conferring metabolic plasticity and promoting resistance to therapy.
Asunto(s)
Hexoquinasa , Leucemia Mieloide Aguda , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismoRESUMEN
It is increasingly becoming clear that cancers are a symbiosis of diverse cell types and tumor clones. Combined single-cell RNA sequencing, flow cytometry, and immunohistochemistry studies of the innate immune compartment in the bone marrow of patients with acute myeloid leukemia (AML) reveal a shift toward a tumor-supportive M2-polarized macrophage landscape with an altered transcriptional program, with enhanced fatty acid oxidation and NAD+ generation. Functionally, these AML-associated macrophages display decreased phagocytic activity and intra-bone marrow coinjection of M2 macrophages together with leukemic blasts strongly enhances in vivo transformation potential. A 2-day in vitro exposure to M2 macrophages results in the accumulation of CALRlow leukemic blast cells, which are now protected against phagocytosis. Moreover, M2-exposed "trained" leukemic blasts display increased mitochondrial metabolism, in part mediated via mitochondrial transfer. Our study provides insight into the mechanisms by which the immune landscape contributes to aggressive leukemia development and provides alternatives for targeting strategies aimed at the tumor microenvironment.
Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/patología , Macrófagos/patología , Fagocitosis , Inmunohistoquímica , Microambiente TumoralRESUMEN
Treatment choice according to the individual conditions remains challenging, particularly in older patients with acute myeloid leukemia (AML) and high risk myelodysplastic syndrome (MDS). The impact of performance status, comorbidities, and physical functioning on survival is not well defined for patients treated with hypomethylating agents. Here we describe the impact of performance status (14% ECOG performance status 2), comorbidity (40% HCT-comorbidity index ≥ 2), and physical functioning (41% short physical performance battery < 9 and 17% ADL index < 6) on overall survival (OS) in 115 older patients (age ≥ 66 years) treated on a clinical trial with a 10-day decitabine schedule. None of the patient-related variables showed a significant association with OS. Multivariable analysis revealed that age > 76 years was significantly associated with reduced OS (HR 1.58; p = 0.043) and female sex was associated with superior OS (HR 0.62; p = 0.06). We further compared the genetic profiles of these subgroups. This revealed comparable mutational profiles in patients younger and older than 76 years, but, interestingly, revealed significantly more prevalent mutated ASXL1, STAG2, and U2AF1 in male compared to female patients. In this cohort of older patients treated with decitabine age and sex, but not comorbidities, physical functioning or cytogenetic risk were associated with overall survival.
Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Masculino , Femenino , Anciano , Decitabina/uso terapéutico , Síndromes Mielodisplásicos/genética , Leucemia Mieloide Aguda/genética , Mutación , Resultado del TratamientoRESUMEN
BACKGROUND: Many older patients with acute myeloid leukaemia die or cannot undergo allogeneic haematopoietic stem-cell transplantation (HSCT) due to toxicity caused by intensive chemotherapy. We hypothesised that replacing intensive chemotherapy with decitabine monotherapy could improve outcomes. METHODS: This open-label, randomised, controlled, phase 3 trial was conducted at 54 hospitals in nine European countries. Patients aged 60 years and older who were newly diagnosed with acute myeloid leukaemia and had not yet been treated were enrolled if they had an Eastern Cooperative Oncology Group performance status of 2 or less and were eligible for intensive chemotherapy. Patients were randomly assigned (1:1) to receive decitabine or standard chemotherapy (known as 3â+â7). For the decitabine group, decitabine (20 mg/m2) was administered for the first 10 days in the first 28-day cycle, followed by 28-day cycles consisting of 5 days or 10 days of decitabine. For the 3â+â7 group, daunorubicin (60 mg/m2) was administered over the first 3 days and cytarabine (200 mg/m2) over the first 7 days, followed by 1-3 additional chemotherapy cycles. Allogeneic HSCT was strongly encouraged. Overall survival in the intention-to-treat population was the primary endpoint. Safety was assessed in all patients who received the allocated treatment. This trial is registered at ClinicalTrials.gov, NCT02172872, and is closed to new participants. FINDINGS: Between Dec 1, 2014, and Aug 20, 2019, 606 patients were randomly assigned to the decitabine (n=303) or 3â+â7 (n=303) group. Following an interim analysis which showed futility, the IDMC recommended on May 22, 2019, that the study continued as planned considering the risks and benefits for the patients participating in the study. The cutoff date for the final analysis presented here was June 30, 2021. At a median follow-up of 4·0 years (IQR 2·9-4·8), 4-year overall survival was 26% (95% CI 21-32) in the decitabine group versus 30% (24-35) in the 3â+â7 group (hazard ratio for death 1·04 [95% CI 0·86-1·26]; p=0·68). Rates of on-protocol allogeneic HSCT were similar between groups (122 [40%] of 303 patients for decitabine and 118 [39%] of 303 patients for 3+7). Rates of grade 3-5 adverse events were 254 (84%) of 302 patients in the decitabine group and 279 (94%) of 298 patients in the 3â+â7 group. The rates of grade 3-5 infections (41% [125 of 302] vs 53% [158 of 298]), oral mucositis (2% [seven of 302] vs 10% [31 of 298]) and diarrhoea (1% [three of 302] vs 8% [24 of 298]) were lower in the decitabine group than in the 3â+â7 group. Treatment-related deaths were reported for 12% (35 of 302) of patients in the decitabine group and 14% (41 of 298) in the 3â+â7 group. INTERPRETATION: 10-day decitabine did not improve overall survival but showed a better safety profile compared with 3â+â7 chemotherapy in older patients with acute myeloid leukaemia eligible for intensive chemotherapy. Decitabine could be considered a better-tolerated and sufficiently efficacious alternative to 3â+â7 induction in fit older patients with acute myeloid leukaemia without favourable genetics. FUNDING: Janssen Pharmaceuticals.
Asunto(s)
Leucemia Mieloide Aguda , Humanos , Persona de Mediana Edad , Anciano , Decitabina/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/diagnóstico , Citarabina/uso terapéutico , Daunorrubicina/uso terapéutico , Trasplante Homólogo , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversosRESUMEN
Background: The outcome of COVID-19 in allogeneic hematopoietic stem cell transplantation (HSCT) recipients is almost uniformely considered poor. The aim of present study was to retrospectively analyse the outcome and risk factors for mortality in a large series of patients who developed COVID-19 infection after an allogeneic HSCT. Methods: This multicenter retrospective study promoted by the European Hematology Association - Infections in Hematology Study Working Group, included 326 adult HSCT patients who had COVID-19 between January 2020 and March 2022. Results: The median time from HSCT to the diagnosis of COVID-19 was 268 days (IQR 86-713; range 0-185 days). COVID-19 severity was mild in 21% of the patients, severe in 39% and critical in 16% of the patients. In multivariable analysis factors associated with a higher risk of mortality were, age above 50 years, presence of 3 or more comorbidities, active hematologic disease at time of COVID-19 infection, development of COVID-19 within 12 months of HSCT, and severe/critical infections. Overall mortality rate was 21% (n=68): COVID-19 was the main or secondary cause of death in 16% of the patients (n=53). Conclusions: Mortality in HSCT recipients who develop COVID-19 is high and largely dependent on age, comorbidities, active hematologic disease, timing from transplant and severity of the infection.