Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37448077

RESUMEN

Although convolutional neural networks (CNNs) have produced great achievements in various fields, many scholars are still exploring better network models, since CNNs have an inherent limitation-that is, the remote modeling ability of convolutional kernels is limited. On the contrary, the transformer has been applied by many scholars to the field of vision, and although it has a strong global modeling capability, its close-range modeling capability is mediocre. While the foreground information to be segmented in medical images is usually clustered in a small interval in the image, the distance between different categories of foreground information is uncertain. Therefore, in order to obtain a perfect medical segmentation prediction graph, the network should not only have a strong learning ability for local details, but also have a certain distance modeling ability. To solve these problems, a remote feature exploration (RFE) module is proposed in this paper. The most important feature of this module is that remote elements can be used to assist in the generation of local features. In addition, in order to better verify the feasibility of the innovation in this paper, a new multi-organ segmentation dataset (MOD) was manually created. While both the MOD and Synapse datasets label eight categories of organs, there are some images in the Synapse dataset that label only a few categories of organs. The proposed method achieved 79.77% and 75.12% DSC on the Synapse and MOD datasets, respectively. Meanwhile, the HD95 (mm) scores were 21.75 on Synapse and 7.43 on the MOD dataset.


Asunto(s)
Algoritmos , Aprendizaje , Suministros de Energía Eléctrica , Inteligencia , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador
2.
Sensors (Basel) ; 22(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36146373

RESUMEN

The model, Transformer, is known to rely on a self-attention mechanism to model distant dependencies, which focuses on modeling the dependencies of the global elements. However, its sensitivity to the local details of the foreground information is not significant. Local detail features help to identify the blurred boundaries in medical images more accurately. In order to make up for the defects of Transformer and capture more abundant local information, this paper proposes an attention and MLP hybrid-encoder architecture combining the Efficient Attention Module (EAM) with a Dual-channel Shift MLP module (DS-MLP), called HEA-Net. Specifically, we effectively connect the convolution block with Transformer through EAM to enhance the foreground and suppress the invalid background information in medical images. Meanwhile, DS-MLP further enhances the foreground information via channel and spatial shift operations. Extensive experiments on public datasets confirm the excellent performance of our proposed HEA-Net. In particular, on the GlaS and MoNuSeg datasets, the Dice reached 90.56% and 80.80%, respectively, and the IoU reached 83.62% and 68.26%, respectively.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA