Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(28): 19572-19579, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38973100

RESUMEN

Hexamethylenetetramine (HMTA) is extensively used in the defense industry, medicines, food, plastics, rubber, and other applications. Traditional organic synthesis of HMTA relies on ammonia derived from the Haber process at high temperatures and pressures. In contrast, electrochemical methods enable a safe and green one-pot synthesis of HMTA from waste NO3-. However, HMTA synthesis through the electrochemical method is challenging owing to the complex reaction pathways involving C-N bond construction and ring formation. In this study, HMTA was efficiently synthesized over electrochemical oxidation-derived copper (e-OD-Cu), with a yield of 76.8% and a Faradaic efficiency of 74.9% at -0.30 VRHE. The catalytic mechanism and reaction pathway of HMTA synthesis on e-OD-Cu were investigated through a series of in situ characterization methods and density-functional theory calculations. The results demonstrated that the electrocatalytic synthesis of HMTA involved a tandem electrochemical-chemical reaction. Additionally, the results indicated that the presence of Cu vacancies enhanced substrate adsorption and inhibited the further hydrogenation of C═N. Overall, this study provides an electrocatalytic method for HMTA synthesis and an electrochemical strategy for constructing multiple C-N bonds.

2.
J Am Chem Soc ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169610

RESUMEN

The electrocatalytic hydrogenation (ECH) of furfural (FF) to furfuryl alcohol, which does not require additional hydrogen or high pressure, is a green and promising production route. In this study, we explore the effects of anions on FF ECH in two buffer electrolytes (KHCO3 and phosphate-buffered saline [PBS]). Anions influence the yield of furfuryl alcohol through molecular activation and adsorption. Molecular dynamics simulations show that bicarbonate is present in the first shell layer of the FF molecule and induces strong hydrogen bonding interactions. In contrast, hydrogen phosphate is present only in the second shell layer, resulting in weak hydrogen bonding interactions. Owing to the interfacial anions and hydrogen bonding, FF molecules exhibit strong flat adsorption on the electrode surface in the KHCO3 solution, while weak adsorption is observed in the PBS solution, as confirmed by operando synchrotron-radiation Fourier-transform infrared spectroscopy and in situ Raman spectroscopy. Density-functional theory calculations reveal that the overall anionic hydrogen bonding network promotes the activation of the carbonyl group in the FF molecule in KHCO3, whereas electrophilic activity is inhibited in PBS. Consequently, FF ECH demonstrates much faster kinetics in KHCO3, while it exhibits sluggish ECH kinetics and a severe hydrogen evolution reaction in PBS. This work introduces a new strategy to optimize the catalytic process through the modulation of the microenvironment.

3.
Small ; 20(30): e2310163, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38389176

RESUMEN

The oxygen reduction reaction (ORR) catalyzed by transition-metal single-atom catalysts (SACs) is promising for practical applications in energy-conversion devices, but great challenges still remain due to the sluggish kinetics of O═O cleavage. Herein, a kind of high-density iron network-like sites catalysts are constructed with optimized intermetallic distances on an amino-functionalized carbon matrix (Fe-HDNSs). Quasi-in situ soft X-ray absorption spectroscopy and in situ synchrotron infrared characterizations demonstrate that the optimized intermetallic distances in Fe-HDNSs can in situ activate the molecular oxygen by fast electron compensation through the hybridized Fe 3d‒O 2p, which efficiently facilitates the cleavage of the O═O bond to *O species and highly suppresses the side reactions for an accelerated kinetics of the 4e- ORR. As a result, the well-designed Fe-HDNSs catalysts exhibit superior performances with a half-wave potential of 0.89 V versus reversible hydrogen electrode (RHE) and a kinetic current density of 72 mA cm-2@0.80 V versus RHE, exceeding most of the noble-metal-free ORR catalysts. This work offers some new insights into the understanding of 4e- ORR kinetics and reaction pathways to boost electrochemical performances of SACs.

4.
Angew Chem Int Ed Engl ; : e202410938, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092496

RESUMEN

The electrocatalytic C-N coupling from CO2 and nitrate emerges as one of the solutions for waste upgrading and urea synthesis. In this work, we constructed electron-deficient Cu sites by the strong metal-polymer semiconductor interaction, to boost efficient and durable urea synthesis. In situ Raman spectroscopy identified the existence of electron-deficient Cu sites and was able to withstand electrochemical reduction conditions. Operando synchrotron-radiation Fourier transform infrared spectroscopy and theoretical calculations disclosed the vital role of electron-deficient Cu in adsorption and C-N coupling of oxygen-containing species. The electron-deficient Cu displayed a high urea yield rate of 255.0 mmol h-1 g-1 at -1.4 V versus the reversible hydrogen electrode and excellent electrochemical durability, superior than that of non-electron-deficient counterpart with conductive carbon material as the support. It can be concluded that the regulation of site electronic structure is more important than the optimization of catalyst conductive properties in the C-N coupling reactions.

5.
Small ; 19(49): e2304303, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37566779

RESUMEN

Single-atom Fe catalysts are considered as the promising catalysts for oxygen reduction reaction (ORR). However, the high electronegativity of the symmetrical coordination N atoms around Fe site generally results in too strong adsorption of *OOH intermediates on the active site, severely limiting the catalytic performance. Herein, a "heteroatom pair synergetic modulation" strategy is proposed to tailor the coordination environment and spin state of Fe sites, enabling breaking the shackles of unsuitable adsorption of intermediate products on the active centers toward a more efficient ORR pathway. The unsymmetrically Co and B heteroatomic coordinated Fe single sites supported on an N-doped carbon (Fe─B─Co/NC) catalyst perform excellent ORR activity with high half-wave potential (E1/2 ) of 0.891 V and a large kinetic current density (Jk ) of 60.6 mA cm-2 , which is several times better than those of commercial Pt/C catalysts. By virtue of in situ electrochemical impedance and synchrotron infrared spectroscopy, it is observed that the optimized Fe sites can effectively accelerate the evolution of O2 into the *O intermediate, overcoming the sluggish O─O bond cleavage of the *OOH intermediate, which is responsible for fast four-electron reaction kinetics.

6.
Small Methods ; 8(3): e2300816, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37926773

RESUMEN

The spin states of active sites have a significant impact on the adsorption/desorption ability of the reaction intermediates during the oxygen evolution reaction (OER). Sulfide spinel is not generally considered a highly efficient OER catalyst owing to the low spin state of Co3+ and the lack of unpaired electrons available for adsorption of reaction intermediates. Herein, it is proposed a novel Nd-evoked valence electronic adjustment strategy to engineer the spin state of Co ions. The unique f-p-d orbital electronic coupling effect stimulates the rearrangement of Co d orbital electrons and increases the eg electron filling to achieve high-spin state Co ions, which promotes charge transport by propagating a spin channel and generates a high number of active sites for intermediate adsorption. The optimized CuCo1.75 Nd0.25 S4 catalyst exhibits outstanding electrocatalytic properties with a low overpotential of 320 mV at 500 mA cm-2 and a 48 h stability at 300 mA cm-2 . In situ synchrotron radiation infrared spectra confirm the quick accumulation of key *OOH and *O intermediates. This work deepens the comprehensive understanding of the relationship between OER activity and spin configurations of Co ions and offers a new design strategy for spinel compound catalysts.

7.
Nat Commun ; 15(1): 1889, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424127

RESUMEN

Covalent organic frameworks (COFs) are ideal templates for constructing metal-free catalysts for the oxygen reduction reaction due to their highly tuneable skeletons and controllable porous channels. However, the development of highly active sites within COFs remains challenging due to their limited electron-transfer capabilities and weak binding affinities for reaction intermediates. Herein, we constructed highly active catalytic centres by modulating the electronic states of the pyridine nitrogen atoms incorporated into the frameworks of COFs. By incorporating different pyridine units (such as pyridine, ionic pyridine, and ionic imidazole units), we tuned various properties including dipole moments, reductive ability, hydrophilicity, and binding affinities towards reaction intermediates. Notably, the ionic imidazole COF (im-PY-BPY-COF) exhibited greater activity than the neutral COF (PY-BPY-COF) and ionic pyridine COF (ion-PY-BPY-COF). Specifically, im-PY-BPY-COF demonstrated a half-wave potential of 0.80 V in 0.1 M KOH, outperforming other metal-free COFs. Theoretical calculations and in situ synchrotron radiation Fourier transform infrared spectroscopy confirmed that the carbon atoms in the ionic imidazole rings improved the activity by facilitating binding of the intermediate OOH* and promoting the desorption of OH*. This study provides new insights into the design of highly active metal-like COF catalysts.

8.
Nat Commun ; 15(1): 6650, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39103370

RESUMEN

The oxygen reduction reaction (ORR) catalyzed by efficient and economical catalysts is critical for sustainable energy devices. Although the newly-emerging atomically dispersed platinum catalysts are highly attractive for maximizing atomic utilization, their catalytic selectivity and durability are severely limited by the inflexible valence transformation between Pt and supports. Here, we present a structure by anchoring Pt atoms onto valence-adjustable CuOx/Cu hybrid nanoparticle supports (Pt1-CuOx/Cu), in which the high-valence Cu (+2) in CuOx combined with zero-valent Cu (0) serves as a wide-range valence electron reservoir (0‒2e) to dynamically adjust the Pt 5d valence states during the ORR. In situ spectroscopic characterizations demonstrate that the dynamic evolution of the Pt 5d valence electron configurations could optimize the adsorption strength of *OOH intermediate and further accelerate the dissociation of O = O bonds for the four-electron ORR. As a result, the Pt1-CuOx/Cu catalysts deliver superior ORR performance with a significantly enhanced four-electron selectivity of over 97% and long-term durability.

9.
Adv Sci (Weinh) ; 10(4): e2205031, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36417569

RESUMEN

Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are the core reactions of a series of advanced modern energy and conversion technologies, such as fuel cells and metal-air cells. Among all kinds of oxygen electrocatalysts that have been reported, single-atom catalysts (SACs) offer great development potential because of their nearly 100% atomic utilization, unsaturated coordination environment, and tunable electronic structure. In recent years, numerous SACs with enriched active centers and asymmetric coordination have been successfully constructed by regulating their coordination environment and electronic structure, which has brought the development of atomic catalysts to a new level. This paper reviews the improvement of SACs brought by atom-level interface engineering. It starts with the introduction of advanced techniques for the characterizations of SACs. Subsequently, different design strategies that are applied to adjust the metal active center and first coordination sphere of SACs and then enhance their oxygen electrocatalysis performance are systematically illustrated. Finally, the future development of SACs toward ORR and OER is discussed and prospected.

10.
Chem Commun (Camb) ; 59(64): 9706-9709, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37470085

RESUMEN

A telluride-spinel ZnCo2Te4/NF catalyst delivered an overpotential (η) of only 370 mV to achieve a current density of 100 mA cm-2 and displayed no significant degradation of performance during 50 h of operation. By virtue of in situ synchrotron infrared spectroscopic detection, an accumulation of key OOH* intermediates over the active site was observed, suggesting that the reaction followed the efficient adsorbate evolution mechanism (AEM) for water oxidation.

11.
Small Methods ; 6(7): e2200408, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35607754

RESUMEN

Atomically dispersed metal catalysts have been widely used in electrocatalysis because of their outstanding catalytic activity and high atomic utilization efficiency. As an extension of single-atom catalysts (SACs), dual-atom catalysts (DACs) provide new insights for the development of atomic-scale catalysts. Higher metal loading and more flexible active sites endow DACs with improved catalytic performance as well as optimized reaction mechanism model. In this review, DACs are firstly classified according to their configurations and metal sites. Subsequently, the synthetic strategies and characterization techniques of DACs are introduced. Furthermore, the applications of DACs are exemplified in various electrocatalytic reactions, including oxygen reduction reaction, oxygen evolution reaction and carbon dioxide reduction reaction. Finally, the prospects to be expected and challenges to be faced with are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA