Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 542
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 25(7): 574-591, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38413840

RESUMEN

The primary regulators of metazoan gene expression are enhancers, originally functionally defined as DNA sequences that can activate transcription at promoters in an orientation-independent and distance-independent manner. Despite being crucial for gene regulation in animals, what mechanisms underlie enhancer selectivity for promoters, and more fundamentally, how enhancers interact with promoters and activate transcription, remain poorly understood. In this Review, we first discuss current models of enhancer-promoter interactions in space and time and how enhancers affect transcription activation. Next, we discuss different mechanisms that mediate enhancer selectivity, including repression, biochemical compatibility and regulation of 3D genome structure. Through 3D polymer simulations, we illustrate how the ability of 3D genome folding mechanisms to mediate enhancer selectivity strongly varies for different enhancer-promoter interaction mechanisms. Finally, we discuss how recent technical advances may provide new insights into mechanisms of enhancer-promoter interactions and how technical biases in methods such as Hi-C and Micro-C and imaging techniques may affect their interpretation.


Asunto(s)
Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Elementos de Facilitación Genéticos/genética , Regiones Promotoras Genéticas/genética , Animales , Humanos , Activación Transcripcional/genética , Regulación de la Expresión Génica/genética , Cromatina/metabolismo , Cromatina/genética
2.
Mol Cell ; 84(7): 1365-1376.e7, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38452764

RESUMEN

Enhancer-gene communication is dependent on topologically associating domains (TADs) and boundaries enforced by the CCCTC-binding factor (CTCF) insulator, but the underlying structures and mechanisms remain controversial. Here, we investigate a boundary that typically insulates fibroblast growth factor (FGF) oncogenes but is disrupted by DNA hypermethylation in gastrointestinal stromal tumors (GISTs). The boundary contains an array of CTCF sites that enforce adjacent TADs, one containing FGF genes and the other containing ANO1 and its putative enhancers, which are specifically active in GIST and its likely cell of origin. We show that coordinate disruption of four CTCF motifs in the boundary fuses the adjacent TADs, allows the ANO1 enhancer to contact FGF3, and causes its robust induction. High-resolution micro-C maps reveal specific contact between transcription initiation sites in the ANO1 enhancer and FGF3 promoter that quantitatively scales with FGF3 induction such that modest changes in contact frequency result in strong changes in expression, consistent with a causal relationship.


Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina/genética , Oncogenes , ADN/química
3.
Mol Cell ; 84(12): 2238-2254.e11, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38870936

RESUMEN

Transcriptional coregulators and transcription factors (TFs) contain intrinsically disordered regions (IDRs) that are critical for their association and function in gene regulation. More recently, IDRs have been shown to promote multivalent protein-protein interactions between coregulators and TFs to drive their association into condensates. By contrast, here we demonstrate how the IDR of the corepressor LSD1 excludes TF association, acting as a dynamic conformational switch that tunes repression of active cis-regulatory elements. Hydrogen-deuterium exchange shows that the LSD1 IDR interconverts between transient open and closed conformational states, the latter of which inhibits partitioning of the protein's structured domains with TF condensates. This autoinhibitory switch controls leukemic differentiation by modulating repression of active cis-regulatory elements bound by LSD1 and master hematopoietic TFs. Together, these studies unveil alternative mechanisms by which disordered regions and their dynamic crosstalk with structured regions can shape coregulator-TF interactions to control cis-regulatory landscapes and cell fate.


Asunto(s)
Elementos de Facilitación Genéticos , Histona Demetilasas , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/química , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Animales , Unión Proteica , Ratones , Diferenciación Celular , Silenciador del Gen
4.
Mol Cell ; 83(15): 2624-2640, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37419111

RESUMEN

The four-dimensional nucleome (4DN) consortium studies the architecture of the genome and the nucleus in space and time. We summarize progress by the consortium and highlight the development of technologies for (1) mapping genome folding and identifying roles of nuclear components and bodies, proteins, and RNA, (2) characterizing nuclear organization with time or single-cell resolution, and (3) imaging of nuclear organization. With these tools, the consortium has provided over 2,000 public datasets. Integrative computational models based on these data are starting to reveal connections between genome structure and function. We then present a forward-looking perspective and outline current aims to (1) delineate dynamics of nuclear architecture at different timescales, from minutes to weeks as cells differentiate, in populations and in single cells, (2) characterize cis-determinants and trans-modulators of genome organization, (3) test functional consequences of changes in cis- and trans-regulators, and (4) develop predictive models of genome structure and function.


Asunto(s)
Núcleo Celular , Genoma , Genoma/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo
5.
Mol Cell ; 82(20): 3755-3757, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36270244

RESUMEN

Uncovering an informative feature of 3D genome structure, Guo et al. (2022) describe chromatin jets in quiescent murine thymocytes: 1-2 Mb structures formed by targeted cohesin loading at narrow accessible chromatin regions and visible as prominent off-diagonal stripes on contact maps.


Asunto(s)
Cromatina , Proteínas Cromosómicas no Histona , Ratones , Animales , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Ciclo Celular/genética , Segregación Cromosómica , Cohesinas
6.
Mol Cell ; 78(3): 539-553.e8, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32213323

RESUMEN

Whereas folding of genomes at the large scale of epigenomic compartments and topologically associating domains (TADs) is now relatively well understood, how chromatin is folded at finer scales remains largely unexplored in mammals. Here, we overcome some limitations of conventional 3C-based methods by using high-resolution Micro-C to probe links between 3D genome organization and transcriptional regulation in mouse stem cells. Combinatorial binding of transcription factors, cofactors, and chromatin modifiers spatially segregates TAD regions into various finer-scale structures with distinct regulatory features including stripes, dots, and domains linking promoters-to-promoters (P-P) or enhancers-to-promoters (E-P) and bundle contacts between Polycomb regions. E-P stripes extending from the edge of domains predominantly link co-expressed loci, often in the absence of CTCF and cohesin occupancy. Acute inhibition of transcription disrupts these gene-related folding features without altering higher-order chromatin structures. Our study uncovers previously obscured finer-scale genome organization, establishing functional links between chromatin folding and gene regulation.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromatina/química , Cromatina/metabolismo , Transcripción Genética , Animales , Factor de Unión a CCCTC/genética , Cromatina/genética , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Células Madre Embrionarias/fisiología , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Componentes Genómicos , Ratones , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Mol Cell ; 79(6): 881-901, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32768408

RESUMEN

Nucleosomes package genomic DNA into chromatin. By regulating DNA access for transcription, replication, DNA repair, and epigenetic modification, chromatin forms the nexus of most nuclear processes. In addition, dynamic organization of chromatin underlies both regulation of gene expression and evolution of chromosomes into individualized sister objects, which can segregate cleanly to different daughter cells at anaphase. This collaborative review shines a spotlight on technologies that will be crucial to interrogate key questions in chromatin and chromosome biology including state-of-the-art microscopy techniques, tools to physically manipulate chromatin, single-cell methods to measure chromatin accessibility, computational imaging with neural networks and analytical tools to interpret chromatin structure and dynamics. In addition, this review provides perspectives on how these tools can be applied to specific research fields such as genome stability and developmental biology and to test concepts such as phase separation of chromatin.


Asunto(s)
Cromatina/genética , Cromosomas/genética , ADN/genética , Nucleosomas/genética , Reparación del ADN/genética , Replicación del ADN/genética , Epigénesis Genética/genética , Humanos
8.
Mol Cell ; 76(3): 395-411.e13, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31522987

RESUMEN

Mammalian genomes are folded into topologically associating domains (TADs), consisting of chromatin loops anchored by CTCF and cohesin. Some loops are cell-type specific. Here we asked whether CTCF loops are established by a universal or locus-specific mechanism. Investigating the molecular determinants of CTCF clustering, we found that CTCF self-association in vitro is RNase sensitive and that an internal RNA-binding region (RBRi) mediates CTCF clustering and RNA interaction in vivo. Strikingly, deleting the RBRi impairs about half of all chromatin loops in mESCs and causes deregulation of gene expression. Disrupted loop formation correlates with diminished clustering and chromatin binding of RBRi mutant CTCF, which in turn results in a failure to halt cohesin-mediated extrusion. Thus, CTCF loops fall into at least two classes: RBRi-independent and RBRi-dependent loops. We speculate that evidence for RBRi-dependent loops may provide a molecular mechanism for establishing cell-specific CTCF loops, potentially regulated by RNA(s) or other RBRi-interacting partners.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Animales , Factor de Unión a CCCTC/química , Factor de Unión a CCCTC/genética , Línea Celular , Cromatina/química , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad
9.
Proc Natl Acad Sci U S A ; 121(36): e2400677121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190357

RESUMEN

Animals use a small number of morphogens to pattern tissues, but it is unclear how evolution modulates morphogen signaling range to match tissues of varying sizes. Here, we used single-molecule imaging in reconstituted morphogen gradients and in tissue explants to determine that Hedgehog diffused extracellularly as a monomer, and rapidly transitioned between membrane-confined and -unconfined states. Unexpectedly, the vertebrate-specific protein SCUBE1 expanded Hedgehog gradients by accelerating the transition rates between states without affecting the relative abundance of molecules in each state. This observation could not be explained under existing models of morphogen diffusion. Instead, we developed a topology-limited diffusion model in which cell-cell gaps create diffusion barriers, which morphogens can only overcome by passing through a membrane-unconfined state. Under this model, SCUBE1 promoted Hedgehog secretion and diffusion by allowing it to transiently overcome diffusion barriers. This multiscale understanding of morphogen gradient formation unified prior models and identified knobs that nature can use to tune morphogen gradient sizes across tissues and organisms.


Asunto(s)
Proteínas Hedgehog , Transducción de Señal , Proteínas Hedgehog/metabolismo , Animales , Difusión , Morfogénesis , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Imagen Individual de Molécula/métodos
10.
Proc Natl Acad Sci U S A ; 121(37): e2403879121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39226361

RESUMEN

The nature of interchain π-system contacts, and their relationship to hole transport, are elucidated for the high-mobility, noncrystalline conjugated polymer C16-IDTBT by the application of scanning tunneling microscopy, molecular dynamics, and quantum chemical calculations. The microstructure is shown to favor an unusual packing motif in which paired chains cross-over one another at near-perpendicular angles. By linking to mesoscale microstructural features, revealed by coarse-grained molecular dynamics and previous studies, and performing simulations of charge transport, it is demonstrated that the high mobility of C16-IDTBT can be explained by the promotion of a highly interconnected transport network, stemming from the adoption of perpendicular contacts at the nanoscale, in combination with fast intrachain transport.

11.
PLoS Biol ; 21(8): e3002217, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37535677

RESUMEN

Animal venom peptides represent valuable compounds for biomedical exploration. The venoms of marine cone snails constitute a particularly rich source of peptide toxins, known as conotoxins. Here, we identify the sequence of an unusually large conotoxin, Mu8.1, which defines a new class of conotoxins evolutionarily related to the well-known con-ikot-ikots and 2 additional conotoxin classes not previously described. The crystal structure of recombinant Mu8.1 displays a saposin-like fold and shows structural similarity with con-ikot-ikot. Functional studies demonstrate that Mu8.1 curtails calcium influx in defined classes of murine somatosensory dorsal root ganglion (DRG) neurons. When tested on a variety of recombinantly expressed voltage-gated ion channels, Mu8.1 displayed the highest potency against the R-type (Cav2.3) calcium channel. Ca2+ signals from Mu8.1-sensitive DRG neurons were also inhibited by SNX-482, a known spider peptide modulator of Cav2.3 and voltage-gated K+ (Kv4) channels. Our findings highlight the potential of Mu8.1 as a molecular tool to identify and study neuronal subclasses expressing Cav2.3. Importantly, this multidisciplinary study showcases the potential of uncovering novel structures and bioactivities within the largely unexplored group of macro-conotoxins.


Asunto(s)
Conotoxinas , Ratones , Animales , Conotoxinas/farmacología , Conotoxinas/química , Canales de Calcio , Péptidos/química , Células Receptoras Sensoriales/metabolismo , Caracoles
12.
Nature ; 584(7822): 579-583, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32760001

RESUMEN

New Guinea is the world's largest tropical island and has fascinated naturalists for centuries1,2. Home to some of the best-preserved ecosystems on the planet3 and to intact ecological gradients-from mangroves to tropical alpine grasslands-that are unmatched in the Asia-Pacific region4,5, it is a globally recognized centre of biological and cultural diversity6,7. So far, however, there has been no attempt to critically catalogue the entire vascular plant diversity of New Guinea. Here we present the first, to our knowledge, expert-verified checklist of the vascular plants of mainland New Guinea and surrounding islands. Our publicly available checklist includes 13,634 species (68% endemic), 1,742 genera and 264 families-suggesting that New Guinea is the most floristically diverse island in the world. Expert knowledge is essential for building checklists in the digital era: reliance on online taxonomic resources alone would have inflated species counts by 22%. Species discovery shows no sign of levelling off, and we discuss steps to accelerate botanical research in the 'Last Unknown'8.


Asunto(s)
Biodiversidad , Clasificación/métodos , Islas , Plantas/clasificación , Mapeo Geográfico , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Internet , Nueva Guinea , Especificidad de la Especie , Factores de Tiempo
13.
Am J Hum Genet ; 109(7): 1217-1241, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35675825

RESUMEN

GRIA1 encodes the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors, which are ligand-gated ion channels that act as excitatory receptors for the neurotransmitter L-glutamate (Glu). AMPA receptors (AMPARs) are homo- or heteromeric protein complexes with four subunits, each encoded by different genes, GRIA1 to GRIA4. Although GluA1-containing AMPARs have a crucial role in brain function, the human phenotype associated with deleterious GRIA1 sequence variants has not been established. Subjects with de novo missense and nonsense GRIA1 variants were identified through international collaboration. Detailed phenotypic and genetic assessments of the subjects were carried out and the pathogenicity of the variants was evaluated in vitro to characterize changes in AMPAR function and expression. In addition, two Xenopus gria1 CRISPR-Cas9 F0 models were established to characterize the in vivo consequences. Seven unrelated individuals with rare GRIA1 variants were identified. One individual carried a homozygous nonsense variant (p.Arg377Ter), and six had heterozygous missense variations (p.Arg345Gln, p.Ala636Thr, p.Ile627Thr, and p.Gly745Asp), of which the p.Ala636Thr variant was recurrent in three individuals. The cohort revealed subjects to have a recurrent neurodevelopmental disorder mostly affecting cognition and speech. Functional evaluation of major GluA1-containing AMPAR subtypes carrying the GRIA1 variant mutations showed that three of the four missense variants profoundly perturb receptor function. The homozygous stop-gain variant completely destroys the expression of GluA1-containing AMPARs. The Xenopus gria1 models show transient motor deficits, an intermittent seizure phenotype, and a significant impairment to working memory in mutants. These data support a developmental disorder caused by both heterozygous and homozygous variants in GRIA1 affecting AMPAR function.


Asunto(s)
Trastornos del Neurodesarrollo , Receptores AMPA , Estudios de Cohortes , Heterocigoto , Humanos , Mutación Missense , Trastornos del Neurodesarrollo/genética , Receptores AMPA/genética
14.
Proc Natl Acad Sci U S A ; 119(31): e2205221119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35901215

RESUMEN

Predicting electronic energies, densities, and related chemical properties can facilitate the discovery of novel catalysts, medicines, and battery materials. However, existing machine learning techniques are challenged by the scarcity of training data when exploring unknown chemical spaces. We overcome this barrier by systematically incorporating knowledge of molecular electronic structure into deep learning. By developing a physics-inspired equivariant neural network, we introduce a method to learn molecular representations based on the electronic interactions among atomic orbitals. Our method, OrbNet-Equi, leverages efficient tight-binding simulations and learned mappings to recover high-fidelity physical quantities. OrbNet-Equi accurately models a wide spectrum of target properties while being several orders of magnitude faster than density functional theory. Despite only using training samples collected from readily available small-molecule libraries, OrbNet-Equi outperforms traditional semiempirical and machine learning-based methods on comprehensive downstream benchmarks that encompass diverse main-group chemical processes. Our method also describes interactions in challenging charge-transfer complexes and open-shell systems. We anticipate that the strategy presented here will help to expand opportunities for studies in chemistry and materials science, where the acquisition of experimental or reference training data is costly.


Asunto(s)
Aprendizaje Profundo , Electrónica , Aprendizaje Automático , Redes Neurales de la Computación , Bibliotecas de Moléculas Pequeñas
15.
Proc Natl Acad Sci U S A ; 119(37): e2203230119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067290

RESUMEN

Overwintering success is an important determinant of arthropod populations that must be considered as climate change continues to influence the spatiotemporal population dynamics of agricultural pests. Using a long-term monitoring database and biologically relevant overwintering zones, we modeled the annual and seasonal population dynamics of a common pest, Helicoverpa zea (Boddie), based on three overwintering suitability zones throughout North America using four decades of soil temperatures: the southern range (able to persist through winter), transitional zone (uncertain overwintering survivorship), and northern limits (unable to survive winter). Our model indicates H. zea population dynamics are hierarchically structured with continental-level effects that are partitioned into three geographic zones. Seasonal populations were initially detected in the southern range, where they experienced multiple large population peaks. All three zones experienced a final peak between late July (southern range) and mid-August to mid-September (transitional zone and northern limits). The southern range expanded by 3% since 1981 and is projected to increase by twofold by 2099 but the areas of other zones are expected to decrease in the future. These changes suggest larger populations may persist at higher latitudes in the future due to reduced low-temperature lethal events during winter. Because H. zea is a highly migratory pest, predicting when populations accumulate in one region can inform synchronous or lagged population development in other regions. We show the value of combining long-term datasets, remotely sensed data, and laboratory findings to inform forecasting of insect pests.


Asunto(s)
Cambio Climático , Mariposas Nocturnas , Estaciones del Año , Animales , Dinámica Poblacional , Temperatura
16.
J Struct Biol ; 216(3): 108113, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39079583

RESUMEN

Kainate receptors play an important role in the central nervous system by mediating postsynaptic excitatory neurotransmission and modulating the release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. To date, only three structures of the ligand-binding domain (LBD) of the kainate receptor subunit GluK1 in complex with positive allosteric modulators have been determined by X-ray crystallography, all belonging to class II modulators. Here, we report a high-resolution structure of GluK1-LBD in complex with kainate and BPAM538, which belongs to the full-spanning class III. One BPAM538 molecule binds at the GluK1 dimer interface, thereby occupying two allosteric binding sites simultaneously. BPAM538 stabilizes the active receptor conformation with only minor conformational changes being introduced to the receptor. Using a calcium-sensitive fluorescence-based assay, a 5-fold potentiation of the kainate response (100 µM) was observed in presence of 100 µM BPAM538 at GluK1(Q)b, whereas no potentiation was observed at GluK2(VCQ)a. Using electrophysiology recordings of outside-out patches excised from HEK293 cells, BPAM538 increased the peak response of GluK1(Q)b co-expressed with NETO2 to rapid application of 10 mM L-glutamate with 130 ± 20 %, and decreased desensitization determined as the steady-state/peak response ratio from 23 ± 2 % to 90 ± 4 %. Based on dose-response relationship experiments on GluK1(Q)b the EC50 of BPAM538 was estimated to be 58 ± 29 µM.

17.
Genome Res ; 31(8): 1447-1461, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34301626

RESUMEN

A wealth of genetic information is available describing single-nucleotide variants in the human population that appear to be well-tolerated and in and of themselves do not confer disease. These variant data sets contain signatures about the protein structure-function relationships and provide an unbiased view of various protein functions in the context of human health. This information can be used to determine regional intolerance to variation, defined as the missense tolerance ratio (MTR), which is an indicator of stretches of the polypeptide chain that can tolerate changes without compromising protein function in a manner that impacts human health. This approach circumvents the lack of comprehensive data by averaging the data from adjacent residues on the polypeptide chain. We reasoned that many motifs in proteins consist of nonadjacent residues, but together function as a unit. We therefore developed an approach to analyze nearest neighbors in three-dimensional space as determined by crystallography rather than on the polypeptide chain. We used members of the GRIN gene family that encode subunits of NMDA-type ionotropic glutamate receptors (iGluRs) to exemplify the differences between these methods. Our method, 3DMTR, provides new information about regions of intolerance within iGluRs, allows consideration of protein-protein interfaces in multimeric proteins, and moves this important research tool from one-dimensional analysis to a structurally relevant tool. We validate the improved 3DMTR score by showing that it more accurately classifies the functional consequences of a set of newly measured and published point mutations of Grin family genes than existing methods.


Asunto(s)
Biología Computacional , Proteínas , Biología Computacional/métodos , Humanos , Mutación Missense , Proteínas/genética
18.
J Urol ; : 101097JU0000000000004129, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950376

RESUMEN

PURPOSE: Nocturnal urine volume and bladder reservoir function are key pathogenic factors behind monosymptomatic nocturnal enuresis (MNE). We investigated the predictive value of these together with other demographic and clinical variables for response to first-line treatments in children with MNE. MATERIALS AND METHODS: A randomized, controlled, international, multicenter study was conducted in 324 treatment-naïve children (6-14 years old) with primary MNE. The children were randomized to treatment with or without prior consideration of voiding diaries. In the group where treatment choice was based on voiding diaries, children with nocturnal polyuria and normal maximum voided volume (MVV) received desmopressin (dDAVP) treatment, and children with reduced MVV and no nocturnal polyuria received an enuresis alarm. In the other group, treatment with dDAVP or alarm was randomly allocated. RESULTS: A total of 281 children (72% males) were qualified for statistical analysis. The change of responding to treatment was 21% higher in children where treatment was individualized compared to children where treatment was randomly selected (risk ratio = 1.21 [1.02-1.45], P = .032). In children with reduced MVV and no nocturnal polyuria (35% of all children), individualized treatment was associated with a 46% improvement in response compared to random treatment selection (risk ratio = 1.46 [1.14-1.87], P = .003). Furthermore, we developed a clinically relevant prediction model for response to dDAVP treatment (receiver operating characteristic curve 0.85). CONCLUSIONS: The present study demonstrates that treatment selection based on voiding diaries improves response to first-line treatment, particularly in specific subtypes. Information from voiding diaries together with clinical and demographic information provides the basis for predicting response. CLINICAL TRIAL REGISTRATION NO.: NCT03389412.

19.
Opt Express ; 32(8): 13181-13196, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859295

RESUMEN

Device-independent quantum key distribution (DIQKD) aims at generating secret keys between distant parties without the parties trusting their devices. We investigate a proposal for performing fully photonic DIQKD, based on single photon sources and heralding measurements at a central station placed between the two parties. We derive conditions to attain non-zero secret-key rates in terms of the photon efficiency, indistinguishability and the second order autocorrelation function of the single-photon sources. Exploiting new results on the security bound of such protocols allows us to reduce the requirements on the physical parameters of the setup. Our analysis shows that in the considered schemes, key rates of several hundreds of secret bits per second are within reach at distances of several tens of kilometers.

20.
J Rheumatol ; 51(4): 350-359, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302173

RESUMEN

OBJECTIVE: This study aimed to compare the prevalence and incidence of polyautoimmunity between anticyclic citrullinated peptide antibody (anti-CCP)-positive and anti-CCP-negative patients with rheumatoid arthritis (RA). METHODS: In a nationwide register-based cohort study, patients with RA (disease duration ≤ 2 yrs) in the DANBIO rheumatology register with an available anti-CCP test in the Register of Laboratory Results for Research were identified. The polyautoimmunity outcome included 21 nonrheumatic autoimmune diseases identified by linkage between the Danish Patient Registry and Prescription Registry. The age- and sex-adjusted prevalence ratio (PR) was calculated by modified Poisson regression to estimate the prevalence at diagnosis in anti-CCP-positive vs anti-CCP-negative patients. The hazard ratio (HR) of polyautoimmunity within 5 years of entry into DANBIO was estimated in cause-specific Cox regression models. RESULTS: The study included 5839 anti-CCP-positive and 3799 anti-CCP-negative patients with RA. At first visit, the prevalence of prespecified polyautoimmune diseases in the Danish registers was 11.1% and 11.9% in anti-CCP-positive and anti-CCP-negative patients, respectively (PR 0.93, 95% CI 0.84-1.05). The most frequent autoimmune diseases were autoimmune thyroid disease, inflammatory bowel disease, and type 1 diabetes mellitus. During a mean follow-up of 3.5 years, only a few (n = 210) patients developed polyautoimmunity (HR 0.6, 95% CI 0.46-0.79). CONCLUSION: Polyautoimmunity as captured through the Danish National Patient Registry occurred in approximately 1 in 10 patients with RA at time of diagnosis regardless of anti-CCP status. In the years subsequent to the RA diagnosis, only a few and mainly anti-CCP-negative patients developed autoimmune disease.


Asunto(s)
Anticuerpos Antiproteína Citrulinada , Artritis Reumatoide , Humanos , Estudios de Cohortes , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/epidemiología , Autoanticuerpos , Dinamarca/epidemiología , Péptidos , Péptidos Cíclicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA