RESUMEN
Progressive metastasis is the primary cause of cancer-related deaths. It has been recognized that many cancers are characterized by long periods of stability followed by subsequent progression. Genes termed metastasis progression suppressors (MPS) are functional gatekeepers of this process, and their loss leads to late-stage progression. Previously, we identified regulator of calcineurin 1, isoform 4 (RCAN1.4) as a functional MPS for several cancers, including thyroid cancer, a tumor type prone to metastatic dormancy. RCAN1.4 knockdown increases expression of the cancer-promoting transcription factor NFE2-like bZIP transcription factor (NFE2L3), and through this mechanism increases cancer cell proliferation and invasion inin vitroandin vivoand promotes metastatic potential to lungs in tail vein models. However, the mechanisms by which RCAN 1.4 regulates specific metastatic steps is incompletely characterized. Studies of the metastatic cascade are limited in mouse systems due to high cost and long duration. Here, we have shown the creation of a thyroid-to-lung metastasis-on-a-chip (MOC) model to address these limitations, allowing invasion analysis and quantification on a single cell level. We then deployed the platform to investigate RCAN1.4 knockdown in fluorescently tagged hTh74 and FTC236 thyroid cancer cell lines. Cells were circulated through microfluidic channels, running parallel to lung hydrogel constructs allowing tumor cell-lung tissue interactions. Similar to studies in mouse models, RCAN1.4 knockdown increased NFE2L3 expression, globally increased invasion distance into lung constructs and had cell line and clonally dependent variations on bulk metastatic burden. In line with previousin vivoobservations, RCAN1.4 knockdown had a greater impact on hTh74 metastatic propensity than FTC236. In summary, we have developed and validated a novel MOC system evaluate and quantify RCAN1.4-regulated thyroid cancer cell lung adherence and invasion. This system creates opportunities for more detailed and rapid mechanistic studies the metastatic cascade and creates opportunities for translational assay development.
Asunto(s)
Neoplasias Pulmonares , Invasividad Neoplásica , Neoplasias de la Tiroides , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Humanos , Línea Celular Tumoral , Animales , Dispositivos Laboratorio en un Chip , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Sistemas MicrofisiológicosRESUMEN
Although tobacco use is an independent adverse prognostic feature in HPV(+) oropharyngeal squamous cell carcinoma (OPSCC), the biologic features associated with tobacco use have not been systematically investigated. We characterized genomic and immunologic features associated with tobacco use through whole exome sequencing, mRNA hybridization, and immunohistochemical staining in 47 HPV(+) OPSCC tumors. Low expression of transcripts in a T cell-inflamed gene expression profile (TGEP) was associated with tobacco use at diagnosis and lower overall and disease-free survival. Tobacco use was associated with an increased proportion of T > C substitutions and a lower proportion of expected mutational signatures, but not with increases in mutational burden or recurrent oncogenic mutations. Our findings suggest that rather than increased mutational burden, tobacco's primary and clinically relevant association in HPV(+) OPSCC is immunosuppression of the tumor immune microenvironment. Quantitative assays of T cell infiltration merit further study as prognostic markers in HPV(+) OPSCC.
RESUMEN
PURPOSE: Physicians treating hematologic malignancies increasingly order targeted sequencing panels to interrogate recurrently mutated genes. The precise impact of these panels on clinical decision making is not well understood. METHODS: Here, we report our institutional experience with a targeted 40-gene panel (MyeloSeq) that is used to generate a report for both genetic variants and variant allele frequencies for the treating physician (the limit of mutation detection is approximately one AML cell in 50). RESULTS: In total, 346 sequencing reports were generated for 325 patients with suspected hematologic malignancies over an 8-month period (August 2018 to April 2019). To determine the influence of genomic data on clinical care for patients with acute myeloid leukemia (AML), we analyzed 122 consecutive reports from 109 patients diagnosed with AML and surveyed the treating physicians with a standardized questionnaire. The panel was ordered most commonly at diagnosis (61.5%), but was also used to assess response to therapy (22.9%) and to detect suspected relapse (15.6%). The panel was ordered at multiple timepoints during the disease course for 11% of patients. Physicians self-reported that 50 of 114 sequencing reports (44%) influenced clinical care decisions in 44 individual patients. Influences were often nuanced and extended beyond identifying actionable genetic variants with US Food and Drug Administration-approved drugs. CONCLUSION: This study provides insights into how physicians are currently using multigene panels capable of detecting relatively rare AML cells. The most influential way to integrate these tools into clinical practice will be to perform prospective clinical trials that assess patient outcomes in response to genomically driven interventions.