Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cephalalgia ; 43(11): 3331024231217469, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38016977

RESUMEN

BACKGROUND: Post-traumatic headache is very common after a mild traumatic brain injury. Post-traumatic headache may persist for months to years after an injury in a substantial proportion of people. The pathophysiology underlying post-traumatic headache remains unknown but is likely distinct from other headache disorders. Identification of brain areas activated in acute and persistent phases of post-traumatic headache can provide insights into the underlying circuits mediating headache pain. We used an animal model of mild traumatic brain injury-induced post-traumatic headache and c-fos immunohistochemistry to identify brain regions with peak activity levels across the acute and persistent phases of post-traumatic headache. METHODS: Male and female C57BL/6 J mice were briefly anesthetized and subjected to a sham procedure or a weight drop closed-head mild traumatic brain injury . Cutaneous allodynia was assessed in the periorbital and hindpaw regions using von Frey filaments. Immunohistochemical c-fos based neural activity mapping was then performed on sections from whole brain across the development of post-traumatic headache (i.e. peak of the acute phase at 2 days post- mild traumatic brain injury), start of the persistent phase (i.e. >14 days post-mild traumatic brain injury) or after provocation with stress (bright light). Brain areas with consistent and peak levels of c-fos expression across mild traumatic brain injury induced post-traumatic headache were identified and included for further analysis. RESULTS: Following mild traumatic brain injury, periorbital and hindpaw allodynia was observed in both male and female mice. This allodynia was transient and subsided within the first 14 days post-mild traumatic brain injury and is representative of acute post-traumatic headache. After this acute post-traumatic headache phase, exposure of mild traumatic brain injury mice to a bright light stress reinstated periorbital and hindpaw allodynia for several hours - indicative of the development of persistent post-traumatic headache. Acute post-traumatic headache was coincident with an increase in neuronal c-fos labeling in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and the nucleus accumbens. Neuronal activation returned to baseline levels by the persistent post-traumatic headache phase in the spinal nucleus of the trigeminal caudalis and primary somatosensory cortex but remained elevated in the nucleus accumbens. In the persistent post-traumatic headache phase, coincident with allodynia observed following bright light stress, we observed bright light stress-induced c-fos neural activation in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens. CONCLUSION: Examination of mild traumatic brain injury-induced changes in peak c-fos expression revealed brain regions with significantly increased neural activity across the acute and persistent phases of post-traumatic headache. Our findings suggest mild traumatic brain injury-induced post-traumatic headache produces neural activation along pain relevant pathways at time-points matching post-traumatic headache-like pain behaviors. These observations suggest that the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens may contribute to both the induction and maintenance of post-traumatic headache.


Asunto(s)
Conmoción Encefálica , Cefalea Postraumática , Humanos , Ratones , Masculino , Femenino , Animales , Cefalea Postraumática/etiología , Hiperalgesia/metabolismo , Ratones Endogámicos C57BL , Cefalea/metabolismo , Encéfalo , Dolor
2.
Mol Psychiatry ; 26(8): 3723-3736, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31900430

RESUMEN

Normal development of cortical circuits, including experience-dependent cortical maturation and plasticity, requires precise temporal regulation of gene expression and molecular signaling. Such regulation, and the concomitant impact on plasticity and critical periods, is hypothesized to be disrupted in neurodevelopmental disorders. A protein that may serve such a function is the MET receptor tyrosine kinase, which is tightly regulated developmentally in rodents and primates, and exhibits reduced cortical expression in autism spectrum disorder and Rett Syndrome. We found that the peak of MET expression in developing mouse cortex coincides with the heightened period of synaptogenesis, but is precipitously downregulated prior to extensive synapse pruning and certain peak periods of cortical plasticity. These results reflect a potential on-off regulatory synaptic mechanism for specific glutamatergic cortical circuits in which MET is enriched. In order to address the functional significance of the 'off' component of the proposed mechanism, we created a controllable transgenic mouse line that sustains cortical MET signaling. Continued MET expression in cortical excitatory neurons disrupted synaptic protein profiles, altered neuronal morphology, and impaired visual cortex circuit maturation and connectivity. Remarkably, sustained MET signaling eliminates monocular deprivation-induced ocular dominance plasticity during the normal cortical critical period; while ablating MET signaling leads to early closure of critical period plasticity. The results demonstrate a novel mechanism in which temporal regulation of a pleiotropic signaling protein underlies cortical circuit maturation and timing of cortical critical period, features that may be disrupted in neurodevelopmental disorders.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Plasticidad Neuronal , Proteínas Proto-Oncogénicas c-met , Animales , Trastorno del Espectro Autista , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-met/genética , Sinapsis
3.
Cephalalgia ; 42(11-12): 1194-1206, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35546268

RESUMEN

OBJECTIVE: Investigation of onabotulinumtoxinA in a murine model of acute and persistent post-traumatic headache. METHODS: Mild traumatic brain injury was induced with a weight drop method. Periorbital and hindpaw cutaneous allodynia were measured for 14 days. Mice were then exposed to bright light stress and allodynia was reassessed. OnabotulinumtoxinA (0.5 U) was injected subcutaneously over the cranial sutures at different post-injury time points. RESULTS: After milt traumatic brain injury, mice exhibited periorbital and hindpaw allodynia that lasted for approximately 14 days. Allodynia could be reinstated on days 14-67 by exposure to stress only in previously injured mice. OnabotulinumtoxinA administration at 2 h after mild traumatic brain injury fully blocked both transient acute and stress-induced allodynia up to day 67. When administered 72 h post-mild traumatic brain injury, onabotulinumtoxinA reversed acute allodynia, but only partially prevented stress-induced allodynia. OnabotulinumtoxinA administration at day 12, when initial allodynia was largely resolved, produced incomplete and transient prevention of stress-induced allodynia. The degree of acute allodynia correlated positively with subsequent stress-induced allodynia. CONCLUSION: Mild traumatic brain injury induced transient headache-like pain followed by long lasting sensitization and persistent vulnerability to a normally innocuous stress stimulus, respectively modeling acute and persistent post-traumatic headache.. Administration of onabotulinumtoxinA following the resolution of acute post-traumatic headache diminished persistent post-traumatic headache but the effects were transient, suggesting that underlying persistent mild traumatic brain injury-induced maladaptations were not reversed. In contrast, early onabotulinumtoxinA administration fully blocked both acute post-traumatic headache as well as the transition to persistent post-traumatic headache suggesting prevention of neural adaptations that promote vulnerability to headache-like pain. Additionally, the degree of acute post-traumatic headache was predictive of risk of persistent post-traumatic headache.


Asunto(s)
Toxinas Botulínicas Tipo A , Conmoción Encefálica , Cefalea Postraumática , Cefalea de Tipo Tensional , Animales , Toxinas Botulínicas Tipo A/uso terapéutico , Conmoción Encefálica/tratamiento farmacológico , Cefalea/tratamiento farmacológico , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Ratones , Dolor/tratamiento farmacológico , Cefalea Postraumática/tratamiento farmacológico , Cefalea Postraumática/etiología , Cefalea de Tipo Tensional/tratamiento farmacológico
4.
Cereb Cortex ; 31(6): 3064-3081, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33570093

RESUMEN

Many developmental syndromes have been linked to genetic mutations that cause abnormal ERK/MAPK activity; however, the neuropathological effects of hyperactive signaling are not fully understood. Here, we examined whether hyperactivation of MEK1 modifies the development of GABAergic cortical interneurons (CINs), a heterogeneous population of inhibitory neurons necessary for cortical function. We show that GABAergic-neuron specific MEK1 hyperactivation in vivo leads to increased cleaved caspase-3 labeling in a subpopulation of immature neurons in the embryonic subpallial mantle zone. Adult mutants displayed a significant loss of parvalbumin (PV), but not somatostatin, expressing CINs and a reduction in perisomatic inhibitory synapses on excitatory neurons. Surviving mutant PV-CINs maintained a typical fast-spiking phenotype but showed signs of decreased intrinsic excitability that coincided with an increased risk of seizure-like phenotypes. In contrast to other mouse models of PV-CIN loss, we discovered a robust increase in the accumulation of perineuronal nets, an extracellular structure thought to restrict plasticity. Indeed, we found that mutants exhibited a significant impairment in the acquisition of behavioral response inhibition capacity. Overall, our data suggest PV-CIN development is particularly sensitive to hyperactive MEK1 signaling, which may underlie certain neurological deficits frequently observed in ERK/MAPK-linked syndromes.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Neuronas GABAérgicas/metabolismo , Inhibición Psicológica , MAP Quinasa Quinasa 1/metabolismo , Parvalbúminas/metabolismo , Animales , Corteza Cerebral/química , Electroencefalografía/métodos , Desarrollo Embrionario/fisiología , Neuronas GABAérgicas/química , Locomoción/fisiología , MAP Quinasa Quinasa 1/análisis , Ratones , Técnicas de Cultivo de Órganos , Parvalbúminas/análisis , Transducción de Señal/fisiología
5.
Cephalalgia ; 41(6): 749-759, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33615840

RESUMEN

AIM: Determine the role of calcitonin-gene related peptide in promoting post-traumatic headache and dysregulation of central pain modulation induced by mild traumatic brain injury in mice. METHODS: Mild traumatic brain injury was induced in lightly anesthetized male C57BL/6J mice by a weight drop onto a closed and unfixed skull, which allowed free head rotation after the impact. We first determined possible alterations in the diffuse noxious inhibitory controls, a measure of net descending pain inhibition called conditioned pain modulation in humans at day 2 following mild traumatic brain injury. Diffuse noxious inhibitory control was assessed as the latency to a thermally induced tail-flick that served as the test stimulus in the presence of right forepaw capsaicin injection that provided the conditioning stimulus. Post-traumatic headache-like behaviors were assessed by the development of cutaneous allodynia in the periorbital and hindpaw regions after mild traumatic brain injury. We then determined if intraperitoneal fremanezumab, an anti-calcitonin-gene related peptide monoclonal antibody or vehicle administered 2 h after sham or mild traumatic brain injury induction could alter cutaneous allodynia or diffuse noxious inhibitory control responses on day 2 post mild traumatic brain injury. RESULTS: In naïve and sham mice, capsaicin injection into the forepaw elevated the latency to tail-flick, reflecting the antinociceptive diffuse noxious inhibitory control response. Periorbital and hindpaw cutaneous allodynia, as well as a loss of diffuse noxious inhibitory control, was observed in mice 2 days after mild traumatic brain injury. Systemic treatment with fremanezumab blocked mild traumatic brain injury-induced cutaneous allodynia and prevented the loss of diffuse noxious inhibitory controls in mice subjected to a mild traumatic brain injury. INTERPRETATION: Sequestration of calcitonin-gene related peptide in the initial stages following mild traumatic brain injury blocked the acute allodynia that may reflect mild traumatic brain injury-related post-traumatic headache and, additionally, prevented the loss of net descending inhibition within central pain modulation pathways. As loss of conditioned pain modulation has been linked to multiple persistent pain conditions, dysregulation of descending modulatory pathways may contribute to the persistence of post-traumatic headache. Additionally, evaluation of the conditioned pain modulation/diffuse noxious inhibitory controls response may serve as a biomarker of vulnerability for chronic/persistent pain. These findings suggest that early anti-calcitonin-gene related peptide intervention has the potential to be effective both for the treatment of mild traumatic brain injury-induced post-traumatic headache, as well as inhibiting mechanisms that may promote post-traumatic headache persistence.


Asunto(s)
Conmoción Encefálica , Péptido Relacionado con Gen de Calcitonina/farmacología , Control Inhibidor Nocivo Difuso/efectos de los fármacos , Neuralgia , Cefalea Postraumática/tratamiento farmacológico , Animales , Anticuerpos Monoclonales , Calcitonina , Capsaicina/farmacología , Dolor Crónico , Modelos Animales de Enfermedad , Hiperalgesia/etiología , Hiperalgesia/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Phys Chem Chem Phys ; 23(46): 26534-26546, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34807964

RESUMEN

A series of model oligomers consisting of combinations of a traditional strong donor unit (3,4-ethylenedioxythiophene), a traditional strong acceptor unit (benzo[c][1,2,5]thiadiazole), and the ambipolar unit thieno[3,4-b]pyrazine were synthesized via cross-coupling methods. The prepared oligomers include all six possible dimeric combinations in order to characterize the extent and nature of donor-acceptor effects commonly used in the design of conjugated materials, with particular focus on understanding how the inclusion of ambipolar units influences donor-acceptor frameworks. The full oligomeric series was thoroughly investigated via photophysical and electrochemical studies, in parallel with density functional theory (DFT) calculations, in order to correlate the nature and extent of donor-acceptor effects on both frontier orbital energies and the desired narrowing of the HOMO-LUMO energy gap. The corresponding relationships revealed should then provide a deeper understanding of donor-acceptor interactions and their application to conjugated materials.

7.
Int J Mol Sci ; 22(4)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671305

RESUMEN

Traumatic brain injuries (TBIs) are a significant health problem both in the United States and worldwide with over 27 million cases being reported globally every year. TBIs can vary significantly from a mild TBI with short-term symptoms to a moderate or severe TBI that can result in long-term or life-long detrimental effects. In the case of a moderate to severe TBI, the primary injury causes immediate damage to structural tissue and cellular components. This may be followed by secondary injuries that can be the cause of chronic and debilitating neurodegenerative effects. At present, there are no standard treatments that effectively target the primary or secondary TBI injuries themselves. Current treatment strategies often focus on addressing post-injury symptoms, including the trauma itself as well as the development of cognitive, behavioral, and psychiatric impairment. Additional therapies such as pharmacological, stem cell, and rehabilitative have in some cases shown little to no improvement on their own, but when applied in combination have given encouraging results. In this review, we will abridge and discuss some of the most recent research advances in stem cell therapies, advanced engineered biomaterials used to support stem transplantation, and the role of rehabilitative therapies in TBI treatment. These research examples are intended to form a multi-tiered perspective for stem-cell therapies used to treat TBIs; stem cells and stem cell products to mitigate neuroinflammation and provide neuroprotective effects, biomaterials to support the survival, migration, and integration of transplanted stem cells, and finally rehabilitative therapies to support stem cell integration and compensatory and restorative plasticity.


Asunto(s)
Lesiones Traumáticas del Encéfalo/rehabilitación , Lesiones Traumáticas del Encéfalo/terapia , Encéfalo/patología , Inflamación/patología , Inflamación/terapia , Trasplante de Células Madre , Células Madre/citología , Animales , Supervivencia Celular , Humanos
8.
Cephalalgia ; 39(14): 1762-1775, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31550910

RESUMEN

BACKGROUND: Acute and persistent post-traumatic headache are often debilitating consequences of traumatic brain injury. Underlying physiological mechanisms of post-traumatic headache and its persistence remain unknown, and there are currently no approved therapies for these conditions. Post-traumatic headache often presents with a migraine-like phenotype. As calcitonin-gene related peptide promotes migraine headache, we explored the efficacy and timing of intervention with an anti- calcitonin-gene related peptide monoclonal antibody in novel preclinical models of acute post-traumatic headache and persistent post-traumatic headache following a mild traumatic brain injury event in mice. METHODS: Male, C57Bl/6 J mice received a sham procedure or mild traumatic brain injury resulting from a weight drop that allowed free head rotation while under minimal anesthesia. Periorbital and hindpaw tactile stimulation were used to assess mild traumatic brain injury-induced cutaneous allodynia. Two weeks after the injury, mice were challenged with stress, a common aggravator of migraine and post-traumatic headache, by exposure to bright lights (i.e. bright light stress) and cutaneous allodynia was measured hourly for 5 hours. A murine anti- calcitonin-gene related peptide monoclonal antibody was administered after mild traumatic brain injury at different time points to allow evaluation of the consequences of either early and sustained calcitonin-gene related peptide sequestration or late administration only prior to bright light stress. RESULTS: Mice with mild traumatic brain injury, but not a sham procedure, exhibited both periorbital and hindpaw cutaneous allodynia that resolved by post-injury day 13. Following resolution of injury-induced cutaneous allodynia, exposure to bright light stress re-instated periorbital and hindpaw cutaneous allodynia in injured, but not sham mice. Repeated administration of anti-calcitonin-gene related peptide monoclonal antibody at 2 hours, 7 and 14 days post mild traumatic brain injury significantly attenuated the expression of cutaneous allodynia when evaluated over the 14-day post injury time course and also prevented bright light stress-induced cutaneous allodynia in injured mice. Administration of anti-calcitonin-gene related peptide monoclonal antibody only at 2 hours and 7 days after mild traumatic brain injury blocked injury-induced cutaneous allodynia and partially prevented bright light stress-induced cutaneous allodynia. A single administration of anti-calcitonin-gene related peptide monoclonal antibody after the resolution of the peak injury-induced cutaneous allodynia, but prior to bright light stress challenge, did not prevent bright light stress-induced cutaneous allodynia. CONCLUSIONS: We used a clinically relevant mild traumatic brain injury event in mice along with a provocative stimulus as novel models of acute post-traumatic headache and persistent post-traumatic headache. Following mild traumatic brain injury, mice demonstrated transient periorbital and hindpaw cutaneous allodynia suggestive of post-traumatic headache-related pain and establishment of central sensitization. Following resolution of injury-induced cutaneous allodynia, exposure to bright light stress re-established cutaneous allodynia, suggestive of persistent post-traumatic headache-related pain. Continuous early sequestration of calcitonin-gene related peptide prevented both acute post-traumatic headache and persistent post-traumatic headache. In contrast, delayed anti-calcitonin-gene related peptide monoclonal antibody treatment following establishment of central sensitization was ineffective in preventing persistent post-traumatic headache. These observations suggest that mechanisms involving calcitonin-gene related peptide underlie the expression of acute post-traumatic headache, and drive the development of central sensitization, increasing vulnerability to headache triggers and promoting persistent post-traumatic headache. Early and continuous calcitonin-gene related peptide blockade following mild traumatic brain injury may represent a viable treatment option for post-traumatic headache and for the prevention of post-traumatic headache persistence. ABBREVIATIONS: CA Cutaneous allodynia CGRP Calcitonin gene-related peptide mTBI Mild traumatic brain injury PTH Post-traumatic headache APTH Acute post-traumatic headache PPTH Persistent post-traumatic headache.


Asunto(s)
Conmoción Encefálica/inducido químicamente , Conmoción Encefálica/tratamiento farmacológico , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/uso terapéutico , Péptido Relacionado con Gen de Calcitonina/toxicidad , Cefalea Postraumática/inducido químicamente , Cefalea Postraumática/tratamiento farmacológico , Enfermedad Aguda , Animales , Conmoción Encefálica/fisiopatología , Enfermedad Crónica , Masculino , Ratones , Ratones Endogámicos C57BL , Cefalea Postraumática/fisiopatología , Vasodilatadores/toxicidad
9.
J Physiol ; 596(7): 1277-1293, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29333742

RESUMEN

KEY POINTS: Traumatic brain injury (TBI) in children remains a leading cause of death and disability and it remains poorly understood why children have worse outcomes and longer recover times. TBI has shown to alter cortical excitability and inhibitory drive onto excitatory neurons, yet few studies have directly examined changes to cortical interneurons. This is addressed in the present study using a clinically relevant model of severe TBI (controlled cortical impact) in interneuron cell type specific Cre-dependent mice. Mice subjected to controlled cortical impact exhibit specific loss of parvalbumin (PV) but not somatostatin immunoreactivity and cell density in the peri-injury zone. PV interneurons are primarily of a fast-spiking (FS) phenotype that persisted in the peri-injury zone but received less frequent inhibitory and stronger excitatory post-synaptic currents. The targeted loss of PV-FS interneurons appears to be distinct from previous reports in adult mice suggesting that TBI-induced pathophysiology is dependent on the age at time of impact. ABSTRACT: Paediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. Traditionally, ongoing neurodevelopment and neuroplasticity have been considered to confer children with an advantage following TBI. However, recent findings indicate that the paediatric brain may be more sensitive to brain injury. Inhibitory interneurons are essential for proper cortical function and are implicated in the pathophysiology of TBI, yet few studies have directly investigated TBI-induced changes to interneurons themselves. Accordingly, in the present study, we examine how inhibitory neurons are altered following controlled cortical impact (CCI) in juvenile mice with targeted Cre-dependent fluorescence labelling of interneurons (Vgat:Cre/Ai9 and PV:Cre/Ai6). Although CCI failed to alter the number of excitatory neurons or somatostatin-expressing interneurons in the peri-injury zone, it significantly decreased the density of parvalbumin (PV) immunoreactive cells by 71%. However, PV:Cre/Ai6 mice subjected to CCI showed a lower extent of fluorescence labelled cell loss. PV interneurons are predominantly of a fast-spiking (FS) phenotype and, when recorded electrophysiologically from the peri-injury zone, exhibited intrinsic properties similar to those of control neurons. Synaptically, CCI induced a decrease in inhibitory drive onto FS interneurons combined with an increase in the strength of excitatory events. The results of the present study indicate that CCI induced both a loss of PV interneurons and an even greater loss of PV expression. This suggests caution is required when interpreting changes in PV immunoreactivity alone as direct evidence of interneuronal loss. Furthermore, in contrast to reports in adults, TBI in the paediatric brain selectively alters PV-FS interneurons, primarily resulting in a loss of interneuronal inhibition.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Potenciales Postsinápticos Excitadores , Neuronas GABAérgicas/patología , Potenciales Postsinápticos Inhibidores , Interneuronas/patología , Parvalbúminas/metabolismo , Células Piramidales/patología , Animales , Niño , Modelos Animales de Enfermedad , Neuronas GABAérgicas/metabolismo , Humanos , Interneuronas/metabolismo , Ratones , Células Piramidales/metabolismo
10.
Nanomedicine ; 14(7): 2155-2166, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29933022

RESUMEN

Clinically, traumatic brain injury (TBI) results in complex heterogeneous pathology that cannot be recapitulated in single pre-clinical animal model. Therefore, we focused on evaluating utility of nanoparticle (NP)-based therapeutics following three diffuse-TBI models: mildclosed-head injury (mCHI), repetitive-mCHI and midline-fluid percussion injury (FPI). We hypothesized that NP accumulation after diffuse TBI correlates directly with blood-brainbarrier permeability. Mice received PEGylated-NP cocktail (20-500 nm) (intravenously) after single- or repetitive-(1 impact/day, 5 consecutive days) CHI (immediately) and midline-FPI (1 h, 3 h and 6 h). NPs circulated for 1 h before perfusion/brain extraction. NP accumulation was analyzed using fluorescent microscopy in brain regions vulnerable to neuropathology. Minimal/no NP accumulation after mCHI/RmCHI was observed. In contrast, midlineFPI resulted in significant peak accumulation of up to 500 nm NP at 3 h post-injury compared to sham, 1 h, and 6 h groups in the cortex. Therefore, our study provides the groundwork for feasibility of NP-delivery based on NPinjection time and NPsize after mCHI/RmCHI and midline-FPI.


Asunto(s)
Barrera Hematoencefálica/patología , Lesiones Encefálicas/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Nanopartículas/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Lesiones Encefálicas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación , Nanopartículas/química
11.
J Neurophysiol ; 113(9): 3268-80, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25695652

RESUMEN

Traumatic brain injury (TBI) most frequently occurs in pediatric patients and remains a leading cause of childhood death and disability. Mild TBI (mTBI) accounts for nearly 75% of all TBI cases, yet its neuropathophysiology is still poorly understood. While even a single mTBI injury can lead to persistent deficits, repeat injuries increase the severity and duration of both acute symptoms and long-term deficits. In this study, to model pediatric repetitive mTBI (rmTBI) we subjected unrestrained juvenile animals (postnatal day 20) to repeat weight-drop impacts. Animals were anesthetized and subjected to sham injury or rmTBI once per day for 5 days. Magnetic resonance imaging (MRI) performed 14 days after injury revealed marked cortical atrophy and ventriculomegaly in rmTBI animals. Specifically, beneath the impact zone the thickness of the cortex was reduced by up to 46% and the area of the ventricles increased by up to 970%. Immunostaining with the neuron-specific marker NeuN revealed an overall loss of neurons within the motor cortex but no change in neuronal density. Examination of intrinsic and synaptic properties of layer II/III pyramidal neurons revealed no significant difference between sham-injured and rmTBI animals at rest or under convulsant challenge with the potassium channel blocker 4-aminopyridine. Overall, our findings indicate that the neuropathological changes reported after pediatric rmTBI can be effectively modeled by repeat weight drop in juvenile animals. Developing a better understanding of how rmTBI alters the pediatric brain may help improve patient care and direct "return to game" decision making in adolescents.


Asunto(s)
Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Corteza Cerebral/patología , Hidrocefalia/etiología , 4-Aminopiridina/farmacología , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Peso Corporal , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas In Vitro , Imagen por Resonancia Magnética , Masculino , Neuronas Motoras/fisiología , Red Nerviosa/fisiopatología , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Sprague-Dawley
12.
Neurosurg Focus ; 36(2): E8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24484261

RESUMEN

Glioblastoma is the most common primary brain tumor with a median 12- to 15-month patient survival. Improving patient survival involves better understanding the biological mechanisms of glioblastoma tumorigenesis and seeking targeted molecular therapies. Central to furthering these advances is the collection and storage of surgical biopsies (biobanking) for research. This paper addresses an imaging modality, confocal reflectance microscopy (CRM), for safely screening glioblastoma biopsy samples prior to biobanking to increase the quality of tissue provided for research and clinical trials. These data indicate that CRM can immediately identify cellularity of tissue biopsies from animal models of glioblastoma. When screening fresh human biopsy samples, CRM can differentiate a cellular glioblastoma biopsy from a necrotic biopsy without altering DNA, RNA, or protein expression of sampled tissue. These data illustrate CRM's potential for rapidly and safely screening clinical biopsy samples prior to biobanking, which demonstrates its potential as an effective screening technique that can improve the quality of tissue biobanked for patients with glioblastoma.


Asunto(s)
Bancos de Muestras Biológicas , Neoplasias Encefálicas/patología , Glioblastoma/patología , Animales , Bancos de Muestras Biológicas/normas , Biopsia , Línea Celular Tumoral , Humanos , Microscopía Confocal/métodos , Ratas , Ratas Desnudas , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
13.
Biomed Opt Express ; 12(8): 4689-4699, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34513218

RESUMEN

Glass micropipette electrodes are commonly used to provide high resolution recordings of neurons. Although it is the gold standard for single cell recordings, it is highly dependent on the skill of the electrophysiologist. Here, we demonstrate a method of guiding micropipette electrodes to neurons by collecting fluorescence at the aperture, using an intra-electrode tapered optical fiber. The use of a tapered fiber for excitation and collection of fluorescence at the micropipette tip couples the feedback mechanism directly to the distance between the target and electrode. In this study, intra-electrode tapered optical fibers provide a targeted robotic approach to labeled neurons that is independent of microscopy.

14.
J Physiol ; 588(Pt 22): 4401-14, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20819946

RESUMEN

Sodium-potassium ATPase ('Na(+)-K(+) ATPase') contributes to the maintenance of the resting membrane potential and the transmembrane gradients for Na(+) and K(+) in neurons. Activation of Na(+)-K(+) ATPase may be important in controlling increases in intracellular sodium during periods of increased neuronal activity. Down-regulation of Na(+)-K(+) ATPase activity is implicated in numerous CNS disorders, including epilepsy. Although Na(+)-K(+) ATPase is present in all neurons, little is known about its activity in different subclasses of neocortical cells. We assessed the physiological properties of Na(+)-K(+) ATPase in fast-spiking (FS) interneurons and pyramidal (PYR) cells to test the hypothesis that Na(+)-K(+) ATPase activity would be relatively greater in neurons that generated high frequency action potentials (the FS cells). Whole-cell patch clamp recordings were made from FS and PYR neurons in layer V of rat sensorimotor cortical slices maintained in vitro using standard techniques. Bath perfusion of Na(+)-K(+) ATPase antagonists (ouabain or dihydro-ouabain) induced either a membrane depolarization in current clamp, or inward current under voltage clamp in both cell types. PYR neurons were divided into two subpopulations based on the amplitude of the voltage or current shift in response to Na(+)-K(+) ATPase blockade. The two PYR cell groups did not differ significantly in electrophysiological properties including resting membrane potential, firing pattern, input resistance and capacitance. Membrane voltage responses of FS cells to Na(+)-K(+) ATPase blockade were intermediate between the two PYR cell groups (P < 0.05). The resting Na(+)-K(+) ATPase current density in FS interneurons, assessed by application of blockers, was 3- to 7-fold larger than in either group of PYR neurons. Na(+)-K(+) ATPase activity was increased either through direct Na(+) loading via the patch pipette or by focal application of glutamate (20 mM puffs). Under these conditions FS interneurons exhibited the largest increase in Na(+)-K(+) ATPase activity. We conclude that resting Na(+)-K(+) ATPase activity and sensitivity to changes in internal Na(+) concentration vary between and within classes of cortical neurons. These differences may have important consequences in pathophysiological disorders associated with down-regulation of Na(+)-K(+) ATPase and hyperexcitability within cortical networks.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Cerebral/enzimología , Neuronas/enzimología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Neuronas/efectos de los fármacos , Ouabaína/farmacología , Ratas , Ratas Sprague-Dawley
15.
Tissue Eng Part A ; 26(13-14): 688-701, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32697674

RESUMEN

The development of effective therapeutics for brain disorders is challenging, in particular, the blood-brain barrier (BBB) severely limits access of the therapeutics into the brain parenchyma. Traumatic brain injury (TBI) may lead to transient BBB permeability that affords a unique opportunity for therapeutic delivery via intravenous administration ranging from macromolecules to nanoparticles (NPs) for developing precision therapeutics. In this regard, we address critical gaps in understanding the range/size of therapeutics, delivery window(s), and moreover, the potential impact of biological factors for optimal delivery parameters. Here we show, for the first time, to the best of our knowledge, that 24-h postfocal TBI female mice exhibit a heightened macromolecular tracer and NP accumulation compared with male mice, indicating sex-dependent differences in BBB permeability. Furthermore, we report for the first time the potential to deliver NP-based therapeutics within 3 days after focal injury in both female and male mice. The delineation of injury-induced BBB permeability with respect to sex and temporal profile is essential to more accurately tailor time-dependent precision and personalized nanotherapeutics. Impact statement In this study, we identified a sex-dependent temporal profile of blood/brain barrier disruption in a preclinical mouse model of traumatic brain injury (TBI) that contributes to starkly different macromolecule and nanoparticle delivery profiles post-TBI. The implications and potential impact of this work are profound and far reaching as it indicates that a demand of true personalized medicine for TBI is necessary to deliver the right therapeutic at the right time for the right patient.


Asunto(s)
Lesiones Encefálicas/metabolismo , Nanopartículas/química , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Lesiones Encefálicas/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/metabolismo , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroglía/metabolismo , Neuroglía/fisiología
16.
J Neurosurg ; 134(6): 1783-1790, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32707545

RESUMEN

OBJECTIVE: Differentiating central nervous system (CNS) lymphoma from other intracranial malignancies remains a clinical challenge in surgical neuro-oncology. Advances in clinical fluorescence imaging contrast agents and devices may mitigate this challenge. Aptamers are a class of nanomolecules engineered to bind cellular targets with antibody-like specificity in a fraction of the staining time. Here, the authors determine if immediate ex vivo fluorescence imaging with a lymphoma-specific aptamer can rapidly and specifically diagnose xenografted orthotopic human CNS lymphoma at the time of biopsy. METHODS: The authors synthesized a fluorescent CNS lymphoma-specific aptamer by conjugating a lymphoma-specific aptamer with Alexa Fluor 488 (TD05-488). They modified human U251 glioma cells and Ramos lymphoma cells with a lentivirus for constitutive expression of red fluorescent protein and implanted them intracranially into athymic nude mice. Three to 4 weeks postimplantation, acute slices (biopsies, n = 28) from the xenografts were collected, placed in aptamer solution, and imaged with a Zeiss fluorescence microscope. Three aptamer staining concentrations (0.3, 1.0, and 3.0 µM) and three staining times (5, 10, and 20 minutes) followed by a 1-minute wash were tested. A file of randomly selected images was distributed to neurosurgeons and neuropathologists, and their ability to distinguish CNS lymphoma from negative controls was assessed. RESULTS: The three staining times and concentrations of TD05-488 were tested to determine the diagnostic accuracy of CNS lymphoma within a frozen section time frame. An 11-minute staining protocol with 1.0-µM TD05-488 was most efficient, labeling 77% of positive control lymphoma cells and less than 1% of negative control glioma cells (p < 0.001). This protocol permitted clinicians to positively identify all positive control lymphoma images without misdiagnosing negative control images from astrocytoma and normal brain. CONCLUSIONS: Ex vivo fluorescence imaging is an emerging technique for generating rapid histopathological diagnoses. Ex vivo imaging with a novel aptamer-based fluorescent nanomolecule could provide an intraoperative tumor-specific diagnosis of CNS lymphoma within 11 minutes of biopsy. Neurosurgeons and neuropathologists interpreted images generated with this molecular probe with high sensitivity and specificity. Clinical application of TD05-488 may permit specific intraoperative diagnosis of CNS lymphoma in a fraction of the time required for antibody staining.


Asunto(s)
Neoplasias del Sistema Nervioso Central/patología , Fluoresceínas/administración & dosificación , Colorantes Fluorescentes/administración & dosificación , Linfoma/patología , Ácidos Sulfónicos/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Biopsia/métodos , Línea Celular Tumoral , Neoplasias del Sistema Nervioso Central/diagnóstico , Fluoresceínas/análisis , Colorantes Fluorescentes/análisis , Humanos , Linfoma/diagnóstico , Ratones , Ratones Desnudos , Técnicas de Cultivo de Órganos , Ácidos Sulfónicos/análisis , Factores de Tiempo
17.
Nat Rev Neurol ; 15(10): 607-617, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31527806

RESUMEN

Post-traumatic headache (PTH) is a highly disabling secondary headache disorder and one of the most common sequelae of mild traumatic brain injury, also known as concussion. Considerable overlap exists between PTH and common primary headache disorders. The most common PTH phenotypes are migraine-like headache and tension-type-like headache. A better understanding of the pathophysiological similarities and differences between primary headache disorders and PTH could uncover unique treatment targets for PTH. Although possible underlying mechanisms of PTH have been elucidated, a substantial void remains in our understanding, and further research is needed. In this Review, we describe the evidence from animal and human studies that indicates involvement of several potential mechanisms in the development and persistence of PTH. These mechanisms include impaired descending modulation, neurometabolic changes, neuroinflammation and activation of the trigeminal sensory system. Furthermore, we outline future research directions to establish biomarkers involved in progression from acute to persistent PTH, and we identify potential drug targets to prevent and treat persistent PTH.


Asunto(s)
Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/metabolismo , Cefalea Postraumática/diagnóstico por imagen , Cefalea Postraumática/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Humanos , Cefalea Postraumática/etiología
18.
ACS Macro Lett ; 7(10): 1215-1219, 2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-35651257

RESUMEN

A new design paradigm for the production of low band gap polymers is reported, in which an ambipolar unit exhibiting both donor and acceptor properties is combined with a conventional acceptor. As initial examples of this approach, the synthesis of two alternating copolymers of thieno[3,4-b]pyrazine and 2,1,3-benzothiadiazole via direct arylation polymerization is reported to give soluble, processable materials with band gaps of 0.97 and 1.05 eV. Although direct arylation polymerization has been previously used to synthesize donor-acceptor materials with band gaps below 1.5 eV, this represents only the second material generated by this polymerization method with a band gap below 1.0 eV.

19.
J Neurosci ; 26(3): 841-50, 2006 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-16421304

RESUMEN

Deep brain stimulation (DBS) of the ventrolateral thalamus stops several forms of tremor. Microelectrode recordings in the human thalamus have revealed tremor cells that fire synchronous with electromyographic tremor. The efficacy of DBS likely depends on its ability to modify the activity of these tremor cells either synaptically by stopping afferent tremor signals or by directly altering the intrinsic membrane currents of the neurons. To test these possibilities, whole-cell patch-clamp recordings of ventral thalamic neurons were obtained from rat brain slices. DBS was simulated (sDBS) using extracellular constant current pulse trains (125 Hz, 60-80 micros, 0.25-5 mA, 1-30 s) applied through a bipolar electrode. Using a paired-pulse protocol, we first established that thalamocortical relay neurons receive converging input from multiple independent afferent fibers. Second, although sDBS induced homosynaptic depression of EPSPs along its own pathway, it did not alter the response from a second independent pathway. Third, in contrast to the subthalamic nucleus, sDBS in the thalamus failed to inhibit the rebound potential and the persistent Na+ current but did activate the Ih current. Finally, in eight patients undergoing thalamic DBS surgery for essential tremor, microstimulation was most effective in alleviating tremor when applied in close proximity to recorded tremor cells. However, stimulation could still suppress tremor at distances incapable of directly spreading to recorded tremor cells. These complementary data indicate that DBS may induce a "functional deafferentation" of afferent axons to thalamic tremor cells, thereby preventing tremor signal propagation in humans.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Transmisión Sináptica/fisiología , Tálamo/fisiología , Temblor/fisiopatología , Temblor/terapia , Vías Aferentes/fisiología , Animales , Humanos , Técnicas In Vitro , Masculino , Ratas , Ratas Sprague-Dawley
20.
CNS Neurosci Ther ; 21(2): 193-203, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25475223

RESUMEN

AIMS: Following a traumatic brain injury (TBI), 5-50% of patients will develop posttraumatic epilepsy (PTE) with children being particularly susceptible. Currently, PTE cannot be prevented and there is limited understanding of the underlying epileptogenic mechanisms. We hypothesize that early after TBI the brain undergoes distinct cellular and synaptic reorganization that facilitates cortical excitability and promotes the development of epilepsy. METHODS: To examine the effect of pediatric TBI on cortical excitability, we performed controlled cortical impact (CCI) on juvenile rats (postnatal day 17). Following CCI, animals were monitored for the presence of epileptiform activity by continuous in vivo electroencephalography (EEG) and/or sacrificed for in vitro whole-cell patch-clamp recordings. RESULTS: Following a short latent period, all animals subjected to CCI developed spontaneous recurrent epileptiform activity within 14 days. Whole-cell patch-clamp recordings of layer V pyramidal neurons showed no changes in intrinsic excitability or spontaneous excitatory postsynaptic currents (sEPSCs) properties. However, the decay of spontaneous inhibitory postsynaptic currents (sIPSCs) was significantly increased. In addition, CCI induced over a 300% increase in excitatory and inhibitory synaptic bursting. Synaptic bursting was prevented by blockade of Na(+)-dependent action potentials or select antagonism of glutamate or GABA-A receptors, respectively. CONCLUSION: Our results demonstrate that CCI in juvenile rats rapidly induces epileptiform activity and enhanced cortical synaptic bursting. Detection of epileptiform activity early after injury suggests it may be an important pathophysiological component and potential indicator of developing PTE.


Asunto(s)
Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Corteza Cerebral/fisiopatología , Epilepsia/etiología , Animales , Animales Recién Nacidos , Biofisica , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Estimulación Eléctrica , Electroencefalografía , Epilepsia/patología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas In Vitro , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp , Quinoxalinas/farmacología , Ratas , Ratas Sprague-Dawley , Valina/análogos & derivados , Valina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA