Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Glob Chang Biol ; 26(11): 6276-6295, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32914511

RESUMEN

Climatic impacts are especially pronounced in the Arctic, which as a region is warming twice as fast as the rest of the globe. Here, we investigate how mean climatic conditions and rates of climatic change impact parasitoid insect communities in 16 localities across the Arctic. We focus on parasitoids in a widespread habitat, Dryas heathlands, and describe parasitoid community composition in terms of larval host use (i.e., parasitoid use of herbivorous Lepidoptera vs. pollinating Diptera) and functional groups differing in their closeness of host associations (koinobionts vs. idiobionts). Of the latter, we expect idiobionts-as being less fine-tuned to host development-to be generally less tolerant to cold temperatures, since they are confined to attacking hosts pupating and overwintering in relatively exposed locations. To further test our findings, we assess whether similar climatic variables are associated with host abundances in a 22 year time series from Northeast Greenland. We find sites which have experienced a temperature rise in summer while retaining cold winters to be dominated by parasitoids of Lepidoptera, with the reverse being true for the parasitoids of Diptera. The rate of summer temperature rise is further associated with higher levels of herbivory, suggesting higher availability of lepidopteran hosts and changes in ecosystem functioning. We also detect a matching signal over time, as higher summer temperatures, coupled with cold early winter soils, are related to high herbivory by lepidopteran larvae, and to declines in the abundance of dipteran pollinators. Collectively, our results suggest that in parts of the warming Arctic, Dryas is being simultaneously exposed to increased herbivory and reduced pollination. Our findings point to potential drastic and rapid consequences of climate change on multitrophic-level community structure and on ecosystem functioning and highlight the value of collaborative, systematic sampling effort.


Asunto(s)
Ecosistema , Herbivoria , Animales , Regiones Árticas , Groenlandia , Interacciones Huésped-Parásitos , Larva
2.
J Chem Ecol ; 46(2): 217-231, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31879865

RESUMEN

Despite active research, antiherbivore activity of specific plant phenolics remains largely unresolved. We constructed silver birch (Betula pendula) lines with modified phenolic metabolism to study the effects of foliar flavonoids and condensed tannins on consumption and growth of larvae of a generalist herbivore, the autumnal moth (Epirrita autumnata). We conducted a feeding experiment using birch lines in which expression of dihydroflavonol reductase (DFR), anthocyanidin synthase (ANS) or anthocyanidin reductase (ANR) had been decreased by RNA interference. Modification-specific effects on plant phenolics, nutrients and phenotype, and on larval consumption and growth were analyzed using uni- and multivariate methods. Inhibiting DFR expression increased the concentration of flavonoids at the expense of condensed tannins, and silencing DFR and ANR decreased leaf and plant size. E. autumnata larvae consumed on average 82% less of DFRi plants than of unmodified controls, suggesting that flavonoids or glandular trichomes deter larval feeding. However, larval growth efficiency was highest on low-tannin DFRi plants, indicating that condensed tannins (or their monomers) are physiologically more harmful than non-tannin flavonoids for E. autumnata larvae. Our results show that genetic manipulation of the flavonoid pathway in plants can effectively be used to produce altered phenolic profiles required for elucidating the roles of low-molecular weight phenolics and condensed tannins in plant-herbivore relationships, and suggest that phenolic secondary metabolites participate in regulation of plant growth.


Asunto(s)
Betula/química , Flavonoides/metabolismo , Mariposas Nocturnas/fisiología , Plantas Modificadas Genéticamente/química , Taninos/metabolismo , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Betula/enzimología , Betula/parasitología , Flavonoides/farmacología , Herbivoria/efectos de los fármacos , Interacciones Huésped-Parásitos , Larva/crecimiento & desarrollo , Larva/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Oxigenasas/antagonistas & inhibidores , Oxigenasas/genética , Oxigenasas/metabolismo , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/parasitología , Interferencia de ARN , Taninos/farmacología
3.
Mol Ecol ; 28(2): 318-335, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30418699

RESUMEN

Pollination is an ecosystem function of global importance. Yet, who visits the flower of specific plants, how the composition of these visitors varies in space and time and how such variation translates into pollination services are hard to establish. The use of DNA barcodes allows us to address ecological patterns involving thousands of taxa that are difficult to identify. To clarify the regional variation in the visitor community of a widespread flower resource, we compared the composition of the arthropod community visiting species in the genus Dryas (mountain avens, family Rosaceae), throughout Arctic and high-alpine areas. At each of 15 sites, we sampled Dryas visitors with 100 sticky flower mimics and identified specimens to Barcode Index Numbers (BINs) using a partial sequence of the mitochondrial COI gene. As a measure of ecosystem functioning, we quantified variation in the seed set of Dryas. To test for an association between phylogenetic and functional diversity, we characterized the structure of local visitor communities with both taxonomic and phylogenetic descriptors. In total, we detected 1,360 different BINs, dominated by Diptera and Hymenoptera. The richness of visitors at each site appeared to be driven by local temperature and precipitation. Phylogeographic structure seemed reflective of geological history and mirrored trans-Arctic patterns detected in plants. Seed set success varied widely among sites, with little variation attributable to pollinator species richness. This pattern suggests idiosyncratic associations, with function dominated by few and potentially different taxa at each site. Taken together, our findings illustrate the role of post-glacial history in the assembly of flower-visitor communities in the Arctic and offer insights for understanding how diversity translates into ecosystem functioning.


Asunto(s)
Artrópodos/fisiología , Ecosistema , Polinización/fisiología , Rosaceae/envenenamiento , Animales , Regiones Árticas , Artrópodos/genética , Código de Barras del ADN Taxonómico , Flores/genética , Flores/crecimiento & desarrollo , Modelos Biológicos , Filogenia , Reproducción , Rosaceae/crecimiento & desarrollo , Rosaceae/fisiología , Semillas/genética , Semillas/crecimiento & desarrollo
4.
Oecologia ; 175(4): 1211-25, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24958367

RESUMEN

Many populations of forest Lepidoptera exhibit 10-year cycles in densities, with impressive outbreaks across large regions. Delayed density-dependent interactions with natural enemies are recognized as key factors driving these cyclic population dynamics, but emphasis has typically been on the larval stages. Eggs, pupae and adults also suffer mortality from predators, parasitoids and pathogens, but little is known about possible density relationships between mortality factors and these non-feeding life stages. In a long-term field study, we experimentally deployed autumnal moth (Epirrita autumnata) eggs and pupae to their natural enemies yearly throughout the 10-year population cycle in northern Norway. The abundance of another geometrid, the winter moth (Operophtera brumata), increased in the study area, permitting comparisons between the two moth species in predation and parasitism. Survival of autumnal moth eggs and pupae was related to the moth abundance in an inverse and delayed manner. Egg and pupal parasitoids dominated as density-dependent mortality factors and predicted the subsequent growth rate of the host population size. In contrast, effects of egg and pupal predators were weakly density dependent, and generally predation remained low. Parasitism rates did not differ between the autumnal and winter moth pupae, whereas predators preferred winter moth pupae over those of the autumnal moth. We conclude that parasitism of the autumnal moth by egg and pupal parasitoids can be related to the changes of the moth density in a delayed density-dependent manner. Furthermore, egg and pupal parasitoids cannot be overlooked as causal factors for the population cycles of forest Lepidoptera in general.


Asunto(s)
Larva/crecimiento & desarrollo , Mariposas Nocturnas/crecimiento & desarrollo , Estaciones del Año , Animales , Interacciones Huésped-Parásitos , Mariposas Nocturnas/parasitología , Noruega , Densidad de Población , Dinámica Poblacional , Pupa
5.
Nat Commun ; 15(1): 6011, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019847

RESUMEN

Herbivorous insects alter biogeochemical cycling within forests, but the magnitude of these impacts, their global variation, and drivers of this variation remain poorly understood. To address this knowledge gap and help improve biogeochemical models, we established a global network of 74 plots within 40 mature, undisturbed broadleaved forests. We analyzed freshly senesced and green leaves for carbon, nitrogen, phosphorus and silica concentrations, foliar production and herbivory, and stand-level nutrient fluxes. We show more nutrient release by insect herbivores at non-outbreak levels in tropical forests than temperate and boreal forests, that these fluxes increase strongly with mean annual temperature, and that they exceed atmospheric deposition inputs in some localities. Thus, background levels of insect herbivory are sufficiently large to both alter ecosystem element cycling and influence terrestrial carbon cycling. Further, climate can affect interactions between natural populations of plants and herbivores with important consequences for global biogeochemical cycles across broadleaved forests.


Asunto(s)
Bosques , Herbivoria , Insectos , Nitrógeno , Hojas de la Planta , Temperatura , Herbivoria/fisiología , Animales , Insectos/fisiología , Hojas de la Planta/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Ciclo del Carbono , Fósforo/metabolismo , Ecosistema , Árboles/metabolismo
6.
Ecol Evol ; 12(11): e9525, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36415871

RESUMEN

Large areas of forests are annually damaged or destroyed by outbreaking insect pests. Understanding the factors that trigger and terminate such population eruptions has become crucially important, as plants, plant-feeding insects, and their natural enemies may respond differentially to the ongoing changes in the global climate. In northernmost Europe, climate-driven range expansions of the geometrid moths Epirrita autumnata and Operophtera brumata have resulted in overlapping and increasingly severe outbreaks. Delayed density-dependent responses of parasitoids are a plausible explanation for the 10-year population cycles of these moth species, but the impact of parasitoids on geometrid outbreak dynamics is unclear due to a lack of knowledge on the host ranges and prevalences of parasitoids attacking the moths in nature. To overcome these problems, we reviewed the literature on parasitism in the focal geometrid species in their outbreak range and then constructed a DNA barcode reference library for all relevant parasitoid species based on reared specimens and sequences obtained from public databases. The combined recorded parasitoid community of E. autumnata and O. brumata consists of 32 hymenopteran species, all of which can be reliably identified based on their barcode sequences. The curated barcode library presented here opens up new opportunities for estimating the abundance and community composition of parasitoids across populations and ecosystems based on mass barcoding and metabarcoding approaches. Such information can be used for elucidating the role of parasitoids in moth population control, possibly also for devising methods for reducing the extent, intensity, and duration of outbreaks.

7.
Ecology ; 91(9): 2506-13, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20957940

RESUMEN

Population cycles of herbivores are thought to be driven by trophic interaction mechanisms, either between food plant and herbivore or between the herbivorous prey and its natural enemies. Observational data have indicated that hymenopteran parasitoids cause delayed density-dependent mortality in cyclic autumnal moth (Epirrita autumnata) populations. We experimentally tested the parasitism hypothesis of moth population cycles by establishing a four-year parasitoid-exclusion experiment, with parasitoid-proof exclosures, parasitoid-permeable exclosures, and control plots. The exclusion of parasitoids led to high autumnal moth abundances, while the declining abundance in both the parasitoid-permeable exclosures and the control plots paralleled the naturally declining density in the study area and could be explained by high rates of parasitism. Our results provide firm experimental support for the hypothesis that hymenopteran parasitoids have a causal relationship with the delayed density-dependent component required in the generation of autumnal moth population cycles.


Asunto(s)
Himenópteros/fisiología , Mariposas Nocturnas/parasitología , Árboles , Animales , Ecosistema , Interacciones Huésped-Parásitos , Larva/parasitología , Dinámica Poblacional , Factores de Tiempo
8.
Ticks Tick Borne Dis ; 11(5): 101449, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32723639

RESUMEN

In 2015 a long-term, nationwide tick and tick-borne pathogen (TBP) monitoring project was started by the Finnish Tick Project and the Finnish Research Station network (RESTAT), with the goal of producing temporally and geographically extensive data regarding exophilic ticks in Finland. In the current study, we present results from the first four years of this collaboration. Ticks were collected by cloth dragging from 11 research stations across Finland in May-September 2015-2018 (2012-2018 in Seili). Collected ticks were screened for twelve different pathogens by qPCR: Borrelia afzelii, Borrelia garinii, Borrelia valaisiana, Borrelia burgdorferi sensu stricto, Borrelia miyamotoi, Babesia spp., Anaplasma phagocytophilum, Rickettsia spp., Candidatus Neoehrlichia mikurensis, Francisella tularensis, Bartonella spp. and tick-borne encephalitis virus (TBEV). Altogether 15 067 Ixodes ricinus and 46 Ixodes persulcatus were collected during 68 km of dragging. Field collections revealed different seasonal activity patterns for the two species. The activity of I. persulcatus adults (only one nymph detected) was unimodal, with activity only in May-July, whereas Ixodes ricinus was active from May to September, with activity peaks in September (nymphs) or July-August (adults). Overall, tick densities were higher during the latter years of the study. Borrelia burgdorferi sensu lato were the most common pathogens detected, with 48.9 ±â€¯8.4% (95% Cl) of adults and 25.3 ±â€¯4.4% of nymphs carrying the bacteria. No samples positive for F. tularensis, Bartonella or TBEV were detected. This collaboration project involving the extensive Finnish Research Station network has ensured enduring and spatially extensive, long-term tick data collection to the foreseeable future.


Asunto(s)
Babesia/aislamiento & purificación , Virus de la Encefalitis Transmitidos por Garrapatas/aislamiento & purificación , Bacterias Gramnegativas/aislamiento & purificación , Ixodes/microbiología , Animales , Monitoreo Epidemiológico , Finlandia , Ixodes/crecimiento & desarrollo , Ixodes/virología , Ninfa/crecimiento & desarrollo , Ninfa/microbiología , Ninfa/virología , Dinámica Poblacional , Estaciones del Año
9.
J Anim Ecol ; 77(3): 597-604, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18284477

RESUMEN

1. The abundance and fecundity-related body size variation of the cyclic autumnal moth Epirrita autumnata were monitored from the early increase phase and throughout the outbreak to the end of the density decline in northernmost Norway during 1999-2006. Another geometrid, the winter moth Operophtera brumata, did not increase in density until the autumnal moth had its post-peak in 2004, and was at its own peak concurrent with the steeply declining autumnal moth abundance in 2005-06. 2. The body size variables measured (forewing lengths of males and females and hind femur lengths of males) of the autumnal moth showed a similar density-dependent response, i.e. increasing density was associated with decreasing body size and fecundity. Nevertheless, regression analyses clearly ranked the pooled geometrid abundance without a time lag as the best predictor for the body size variation, ahead of the abundance of the autumnal moth or past abundance of all geometrids. 3. Nondelayed effects of lowered food quality and absolute shortage of foliage under congested conditions are the most plausible reasons for reduced body size. 4. Two most commonly proposed causal factors of the autumnal moth population cycle, i.e. delayed inducible resistance of the host plant (mountain birch Betula pubescens czerepanovii) and delayed density-dependent parasitism by specialized hymenopteran parasitoids, cannot easily explain the diverging population trends between the autumnal and winter moths. 5. We suggest that either the inducible resistance of the host tree or the host utilization of the most important parasitoids and/or pathogens have to be strictly species-specific between these closely related moth species to produce the population dynamics observed. That fecundity of the autumnal moth was best related to the pooled geometrid abundance weakens support for the former hypothesis, while our lack of host-specific information limits conclusions about the role of natural enemies.


Asunto(s)
Betula/fisiología , Mariposas Nocturnas/fisiología , Animales , Tamaño Corporal , Femenino , Fertilidad/fisiología , Larva/fisiología , Masculino , Mariposas Nocturnas/anatomía & histología , Noruega , Densidad de Población , Dinámica Poblacional , Análisis de Regresión , Estaciones del Año , Factores de Tiempo
10.
Parasit Vectors ; 8: 648, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26691851

RESUMEN

BACKGROUND: Birds host several ectoparasitic fly species with negative effects on nestling health and reproductive output, and with the capability of transmitting avian blood parasites. Information on the abundance and distribution of the ectoparasitic fly genera Ornithomya (Hippoboscidae) and Protocalliphora (Calliphoridae) in northern Europe is still generally poor, and we thus explored their geographic range and occurrence of these flies in the nests of a common avian model species, the pied flycatcher Ficedula hypoleuca. METHODS: Nests of F. hypoleuca were collected from 21 locations across Fennoscandia in summer 2013, across a latitudinal gradient (between 56 °N - 70 °N) and examined for the presence of fly puparia. Adult specimens of Ornithomya spp. were also collected for species identification. Fly species were identified morphologically and identifications confirmed with DNA barcoding. RESULTS: We found three species: two louse-flies - Ornithomya chloropus and O. avicularia - and one blow-fly, Protocalliphora azurea. The prevalence of O. avicularia was higher in southern latitudes and this species was not encountered beyond 62 °N whereas O. chloropus and P. azurea occurred across the whole range of latitudes. The prevalence of O. chloropus further increased with increasing distance from the coast - a pattern not documented before. The three fly species showed no interspecific associations in their prevalence. CONCLUSIONS: Our study revealed relatively high prevalence for all the species (O. chloropus 59 %, O. avicularia 20 %, P. azurea 32 %), and an interesting spatial pattern in the prevalence of the two louse fly species. Our sample did not indicate any major range shifts towards the north for the southern species as compared to the information from the past. Morphological identification of O. chloropus did not match with the corresponding sequences published in the GenBank and taxonomy of this group calls for further studies.


Asunto(s)
Dípteros/clasificación , Dípteros/crecimiento & desarrollo , Infestaciones Ectoparasitarias/veterinaria , Pájaros Cantores/parasitología , Animales , Infestaciones Ectoparasitarias/parasitología , Europa (Continente) , Filogeografía , Prevalencia
11.
Oecologia ; 141(1): 47-56, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15338264

RESUMEN

Increasing fecundity with increasing density has been observed for many cyclic herbivore populations, including some forest Lepidoptera. We monitored population density, body size and reproductive capacity of the cyclic lepidopteran, the autumnal moth (Epirrita autumnata, Geometridae), from the early increase phase to the devastating outbreak density in northernmost Norway. Larval density of the species increased exponentially from 1998 to 2002 and remained at the outbreak level also in 2003. Within the same period, the body size and fecundity of individuals reduced as analysed from several parallel datasets on larvae, pupae and adults. In another study area in northernmost Finland, the density increase of the autumnal moth was moderate only, and true outbreak density was not attained during the study. Despite that, a reduction was again detected in the size and fecundity of individuals. Possible factors responsible for the reduced size and fecundity of individuals in the Norwegian population were quantitative shortage of foliage, rapid and delayed inducible resistances of the host, mountain birch (Betula pubescens ssp. czerepanovii), as well as crowding-induced responses of larvae. These factors likely acted in concert, although non-delayed responses to the density were emphasized. Our findings did not support the hypotheses of climatic release, inducible susceptibility of the host tree and mast depression (i.e. lowered chemical defence of the host tree after its mast seeding) as promoters of the fecundity-based density increase of the autumnal moth, since the reduced fecundity in relation to increased density was strongly against the predictions of these hypotheses. Therefore, we suggest that the density increase of autumnal moth populations is promoted by high survival rather than exceptionally high fecundity.


Asunto(s)
Tamaño Corporal/fisiología , Mariposas Nocturnas/fisiología , Animales , Pesos y Medidas Corporales , Fertilidad/fisiología , Finlandia , Larva/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Noruega , Densidad de Población , Dinámica Poblacional , Alas de Animales/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA