Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neurol Sci ; 45(4): 1429-1436, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38010585

RESUMEN

Myelin oligodendrocyte glycoprotein-immunoglobulin G associated disease (MOGAD) is an autoimmune demyelinating disorder of the central nervous system (CNS) which usually occurs with recurrent optic neuritis, transverse myelitis, acute disseminating encephalomyelitis, or brainstem encephalitis. To date, the anti-CD 20 drug rituximab (RTX) is employed in MOGAD although some authors reported the efficacy of Tocilizumab (TCZ) in refractory patients. We present the case of a woman affected by refractory MOGAD who was treated with TCZ after therapy with RTX had failed to prevent relapses. We also conducted a current literature review on TCZ use in MOGAD. A 57-year-old Caucasian woman affected by MOGAD with severe motor impairment and cognitive dysfunction was treated from 2020 to February 2022 with RTX. However, she experienced progressive clinical and cognitive worsening associated with white matter lesions mimicking leukodystrophy. In February 2022, the patient started therapy with TCZ administered with improvement of cognitive performance, walking ability, and brainstem functions. During TCZ, our patient reached the condition of NEDA-3 (no relapse, no increase in disability, no MRI activity on neuroimaging follow-up performed in September 2023). Moreover, the patient experienced paucisymptomatic SARS-CoV-2 infection that did not modify TCZ schedule. To date, there are few evidence on the efficacy and safety of TCZ in MOGAD. However, all the reviewed cases showed that TCZ represents an effective therapy in drug-resistant MOGAD. Our case highlights the efficacy of TCZ in drug resistant MOGAD and strengthens previous reports of TCZ safety and efficacy in MOGAD.


Asunto(s)
Enfermedades Autoinmunes , Inmunoglobulina G , Femenino , Humanos , Persona de Mediana Edad , Glicoproteína Mielina-Oligodendrócito , Recurrencia Local de Neoplasia , Anticuerpos Monoclonales Humanizados/uso terapéutico , Autoanticuerpos
2.
Neurol Int ; 16(4): 761-775, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39051217

RESUMEN

BACKGROUND: Therapeutic plasma exchange (TPE) is a highly effective rescue treatment for patients with acute exacerbation of neuroimmunological disease that removes circulating autoantibodies and inflammatory components from the bloodstream. The aims of this study are to explore the safety and the effectiveness of TPE in patients with autoimmune neurological disorders. METHODS: We retrospectively evaluated the frequency of adverse events (AEs) and the effectiveness of TPE using the modified Ranking Scale (mRS) in patients with acute neurological flares who underwent TPE at the University Hospital of Palermo. RESULTS: Of 59 patients, the majority underwent TPE due to multiple sclerosis (MS) relapse. In 23.7% of cases, TPE was performed before obtaining a definite diagnosis due to the severity of the clinical presentation. After TPE, the mRS score was globally reduced (p < 0.0001), and this effect was marked in patients with MS, Guillain-Barré syndrome, and myasthenia gravis crisis but not in those with paraneoplastic syndromes. Circulating pathogenetic antibodies, younger age, and the early use of TPE were factors strongly associated with TPE effectiveness. The overall safety profile of TPE was satisfactory with an AE frequency of 15%. CONCLUSIONS: These results highlight the early use of TPE in patients with circulating pathogenetic antibodies as well as its favorable safety profile.

3.
Front Neurosci ; 17: 1091955, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36824218

RESUMEN

Aims: During pregnancy, fetal cells can migrate to the mother via blood circulation. A percentage of these cells survive in maternal tissues for decades generating a population of fetal microchimeric cells (fMCs), whose biological role is unclear. The aim of this study was to investigate the association between the sex of offspring, an indirect marker of fMCs, and magnetic resonance imaging (MRI) features in women with multiple sclerosis (MS). Methods: We recruited 26 nulliparous MS patients (NPp), 20 patients with at least one male son (XYp), and 8 patients with only daughters (XXp). Each patient underwent brain MR scan to acquire 3D-T2w FLAIR FatSat and 3D-T1w FSPGR/TFE. Lesion Segmentation Tool (LST) and FreeSurfer were used to obtain quantitative data from MRI. Additional data were collected using medical records. Multiple regression models were applied to evaluate the association between sex of offspring and MS data. Results: Comparing NPp and XXp, we found that NPp had larger 4th ventricle volume (2.02 ± 0.59 vs. 1.70 ± 0.41; p = 0.022), smaller left entorhinal volume (0.55 ± 0.17 vs. 0.68 ± 0.25; p = 0.028), and lower thickness in the following cortical areas: left paracentral (2.34 ± 0.16 vs. 2.39 ± 0.17; p = 0.043), left precuneus (2.27 ± 0.11 vs. 2.34 ± 0.16; p = 0.046), right lateral occipital (2.14 ± 0.11 vs. 2.25 ± 0.08; p = 0.006). NPp also had lower thickness in left paracentral cortex (2.34 ± 0.16 vs. 2.46 ± 0.17; p = 0.004), left precalcarine cortex (1.64 ± 0.14 vs. 1.72 ± 0.12; p = 0.041), and right paracentral cortex (2.34 ± 0.17 vs. 2.42 ± 0.14; p = 0.015) when compared to XYp. Comparing XYp and XXp, we found that XYp had higher thickness in left cuneus (1.80 ± 0.14 vs. 1.93 ± 0.10; p = 0.042) and left pericalcarine areas (1.59 ± 0.19 vs. 1.72 ± 0.12; p = 0.032) and lower thickness in right lateral occipital cortex (2.25 ± 0.08 vs. 2.18 ± 0.13; p = 0.027). Discussion: Our findings suggested an association between the sex of offspring and brain atrophy. Considering the sex of offspring as an indirect marker of fMCs, we speculated that fMCs could accumulate in different brain areas modulating MS neuropathological processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA