Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eukaryot Cell ; 11(12): 1582-3, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23193139

RESUMEN

Wickerhamomyces ciferrii is a microorganism characterized by the production and secretion of large amounts of acetylated sphingoid bases, in particular tetraacetyl phytosphingosine. Here, we present the 15.90-Mbp draft genome sequence of W. ciferrii NRRL Y-1031 F-60-10 generated by pyrosequencing and de novo assembly. The draft genome sequence comprising 364 contigs in 150 scaffolds was annotated and covered 6,702 protein-coding sequences. This information will contribute to the metabolic engineering of this yeast to improve the yield and spectrum of acetylated sphingoid bases in biotechnological production.


Asunto(s)
Genoma Fúngico , Pichia/genética , Secuencia de Bases , Mapeo Contig , Bases de Datos Genéticas , Anotación de Secuencia Molecular , Datos de Secuencia Molecular
2.
Metab Eng ; 14(2): 172-84, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22178746

RESUMEN

The non-conventional yeast Pichia ciferrii is known to secrete the sphingoid long-chain base phytosphingosine in a tetraacetylated form (TAPS). Sphingolipids are important ingredients in cosmetic applications as they play important roles in human skin. Our work aimed to improve TAPS production by genetic engineering of P. ciferrii. In the first step we improved precursor availability by blocking degradation of L-serine, which is condensed with palmitoyl-CoA by serine palmitoyltransferase in the first committed step of sphingolipid biosynthesis. Successive deletion of two genes, SHM1 and SHM2, encoding L-serine hydroxymethyltransferases, and of CHA1 encoding L-serine deaminase, resulted in a strain producing 65 mg((TAPS))g(-1)((cdw)), which is a threefold increase in comparison with the parental strain. Attempts to increase the metabolic flux into and through the L-serine biosynthesis pathway did not improve TAPS production. However, genetic engineering of the sphingolipid pathway further increased secretion of TAPS. Blocking of sphingoid long-chain base phosphorylation by deletion of the LCB kinase gene PcLCB4 resulted in a further increase in TAPS production by 78% and significant secretion of the direct precursor of phytosphingosine, sphinganin, in a triacetylated form (TriASa). Overproduction of two serine palmitoyltransferase subunits, Lcb1 and Lcb2, together with a deletion of the gene ORM12 encoding a putative negative regulator of sphingolipid synthesis resulted in a strain producing 178 mg((TAPS))g(-1)((cdw)). Additional overproduction of the C4-hydroxylase Syr2 converting sphinganine to phytosphingosine reduced TriASa production and further improved TAPS production. The final recombinant P. ciferrii strain produced up to 199 mg((TAPS))g(-1)((cdw)) with a maximal production rate of 8.42 mg×OD(600nm)(-1)h(-1) and a titer of about 2 g L(-1), and should be applicable for industrial TAPS production.


Asunto(s)
Ingeniería Metabólica , Pichia/metabolismo , Serina/metabolismo , Esfingolípidos/biosíntesis , Esfingosina/análogos & derivados , Eliminación de Gen , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Pichia/genética , Serina/genética , Esfingolípidos/genética , Esfingosina/biosíntesis , Esfingosina/genética
3.
Metab Eng ; 14(4): 412-26, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22449569

RESUMEN

The study describes the identification of sphingolipid biosynthesis genes in the non-conventional yeast Pichia ciferrii, the development of tools for its genetic modification as well as their application for metabolic engineering of P. ciferrii with the goal to generate strains capable of producing the rare sphingoid bases sphinganine and sphingosine. Several canonical genes encoding ceramide synthase (encoded by PcLAG1 and PcLAF1), alkaline ceramidase (PcYXC1) and sphingolipid C-4-hydroxylase(PcSYR2), as well as structural genes for dihydroceramide Δ(4)-desaturase (PcDES1) and sphingolipid Δ(8)-desaturase (PcSLD1) were identified, indicating that P. ciferrii would be capable of synthesizing desaturated sphingoid bases, a property not ubiquitously found in yeasts. In order to convert the phytosphingosine-producing P. ciferrii wildtype into a strain capable of producing predominantly sphinganine, Syringomycin E-resistant mutants were isolated. A stable mutant almost exclusively producing high levels of acetylated sphinganine was obtained and used as the base strain for further metabolic engineering. A metabolic pathway required for the three-step conversion of sphinganine to sphingosine was implemented in the sphinganine producing P. ciferrii strain and subsequently enhanced by screening for the appropriate heterologous enzymes, improvement of gene expression and codon optimization. These combined efforts led to a strain capable of producing 240mgL(-1) triacetyl sphingosine in shake flask, with tri- and diacetyl sphinganine being the main by-products. Lab-scale fermentation of this strain resulted in production of up to 890mgkg(-1) triacetyl sphingosine. A third by-product was unequivocally identified as triacetyl sphingadienine. It could be shown that inactivation of the SLD1 gene in P. ciferrii efficiently suppresses triacetyl sphingadienine formation. Further improvement of the described P. ciferrii strains will enable a biotechnological route to produce sphinganine and sphingosine for cosmetic and pharmaceutical applications.


Asunto(s)
Ingeniería Metabólica/métodos , Pichia/enzimología , Esfingosina/análogos & derivados , Esfingosina/biosíntesis , Ceramidasa Alcalina/genética , Ceramidasa Alcalina/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Pichia/genética , Esfingosina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA