Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Sci Technol ; 55(3): 1852-1863, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33476134

RESUMEN

Exposure to bioaerosols has been implicated in adverse respiratory symptoms, infectious diseases, and bioterrorism. Although these particles have been measured within residential and occupational settings in multiple studies, the deposition of bioaerosol particles within the human respiratory system has been only minimally explored. This paper uses real-world environmental measurement data of total fungal spores using Air-o-Cell cassettes in 16 different apartments and residents' physiological data in those apartments to predict respiratory deposition of the spores. The airborne spore concentrations were measured during the spring, summer, and fall. The respiratory deposition of five most prevalent spore genera-Ascospores, Aspergillus, Basidiospores, Cladosporium, and Myxomycetes-was predicted using three empirical models: the Multiple Path Particle Dosimetry model, using both the Yeh and age-specific versions, and the Bioaerosol Adaptation of the International Committee on Radiological Protection's Lung deposition model. The predicted total deposited number of spores was highest for Ascospores and Cladosporium. While the majority of spores deposit were in the extrathoracic region, there is a significant deposition for both Aspergillus and Cladosporium in the alveolar region, potentially leading to the development of aspergillosis or allergic asthma. Although the dose-response relationship is unknown, the estimate of the actual spore deposition could be the first step in determining such a relationship.


Asunto(s)
Microbiología del Aire , Cladosporium , Aspergillus , Monitoreo del Ambiente , Humanos , Pulmón , Estaciones del Año , Esporas Fúngicas
2.
Indoor Air ; 31(2): 502-523, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32931080

RESUMEN

Bioaerosol concentrations in residential buildings located in the Northeastern US have not been widely studied. Here, in 2011-2015, we studied the presence and seasonal variability of culturable fungi and bacteria in three multi-family apartment buildings and correlated the bioaerosol concentrations with building ventilation system types and environmental parameters. A total of 409 indoor and 86 outdoor samples were taken. Eighty-five percent of investigated apartments had indoor-outdoor (I/O) ratios of culturable fungi below 1, suggesting minimal indoor sources of fungi. In contrast, 56% of the apartments had I/O ratios for culturable bacteria above 1, indicating the prominence of indoor sources of bacteria. Culturable fungi I/O ratios in apartments serviced by central heating, ventilation, and air-conditioning (HVAC) system were lower than those in apartments with window AC. The type of ventilation system did not have a significant effect on the presence of indoor culturable bacteria. A significant positive association was determined between indoor dew point (DP) levels and indoor culturable fungi (P < .001) and bacteria (P < .001), regardless of ventilation type. Also, residents in apartments with central HVAC did not experience extreme DP values. We conclude that building ventilation systems, seasonality, and indoor sources are major factors affecting indoor bioaerosol levels in residential buildings.


Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior , Monitoreo del Ambiente , Aire Acondicionado , Filtros de Aire , Bacterias , Hongos , Calefacción , Vivienda , Humanos , Material Particulado , Estaciones del Año , Ventilación
3.
Artículo en Inglés | MEDLINE | ID: mdl-25594117

RESUMEN

Improved indoor air quality (IAQ) is one of the critical components of green building design. Green building tax credit (e.g., New York State Green Building Tax Credit (GBTC)) and certification programs (e.g., Leadership in Energy & Environmental Design (LEED)) require indoor air quality measures and compliance with allowable maximum concentrations of common indoor air pollutants. It is not yet entirely clear whether compliance with these programs results in improved IAQ and ultimately human health. As a case in point, annual indoor air quality measurements were conducted in a residential green high-rise building for five consecutive years by an industrial hygiene contractor to comply with the building's GBTC requirements. The implementation of green design measures resulted in better IAQ compared to data in references of conventional homes for some parameters, but could not be confirmed for others. Relative humidity and carbon dioxide were satisfactory according to existing standards. Formaldehyde levels during four out of five years were below the most recent proposed exposure limits found in the literature. To some degree, particulate matter (PM) levels were lower than that in studies from conventional residential buildings. Concentrations of Volatile Organic Compounds (VOCs) with known permissible exposure limits were below levels known to cause chronic health effects, but their concentrations were inconclusive regarding cancer health effects due to relatively high detection limits. Although measured indoor air parameters met all IAQ maximum allowable concentrations in GBTC and applicable LEED requirements at the time of sampling, we argue that these measurements were not sufficient to assess IAQ comprehensively because more sensitive sampling/analytical methods for PM and VOCs are needed; in addition, there is a need for a formal process to ensure rigor and adequacy of sampling and analysis methods. Also, we suggest that a comprehensive IAQ assessment should include mixed mode thermal comfort models, semi-volatile organic compounds, assessment of new chemicals, and permissible exposure levels of many known indoor VOCs and bioaerosols. Plus, the relationship between energy consumption and IAQ, and tenant education on health effects of indoor pollutants and their sources may need more attention in IAQ investigations in green buildings.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Formaldehído/análisis , Vivienda , Material Particulado/análisis , Compuestos Orgánicos Volátiles/análisis , Dióxido de Carbono , Exposición a Riesgos Ambientales , Humanos , New England
4.
Sci Data ; 9(1): 369, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764639

RESUMEN

This paper introduces a database of 34 field-measured building occupant behavior datasets collected from 15 countries and 39 institutions across 10 climatic zones covering various building types in both commercial and residential sectors. This is a comprehensive global database about building occupant behavior. The database includes occupancy patterns (i.e., presence and people count) and occupant behaviors (i.e., interactions with devices, equipment, and technical systems in buildings). Brick schema models were developed to represent sensor and room metadata information. The database is publicly available, and a website was created for the public to access, query, and download specific datasets or the whole database interactively. The database can help to advance the knowledge and understanding of realistic occupancy patterns and human-building interactions with building systems (e.g., light switching, set-point changes on thermostats, fans on/off, etc.) and envelopes (e.g., window opening/closing). With these more realistic inputs of occupants' schedules and their interactions with buildings and systems, building designers, energy modelers, and consultants can improve the accuracy of building energy simulation and building load forecasting.

5.
Artículo en Inglés | MEDLINE | ID: mdl-26805862

RESUMEN

There are limited data on air quality parameters, including airborne particulate matter (PM) in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1) measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E) and mechanical (Building L) ventilation; (2) compare indoor and outdoor PM mass concentrations and their ratios (I/O) in these buildings, taking into account the effects of occupant behavior; and (3) evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m³) than in Building L (37 µg/m³); I/O was higher in Building E (1.3-2.0) than in Building L (0.5-0.8) for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation) are important factors affecting residents' exposure to PM in residential green buildings.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Planificación Ambiental/estadística & datos numéricos , Vivienda , Material Particulado/análisis , Ventilación/estadística & datos numéricos , New York
6.
J Air Waste Manag Assoc ; 66(11): 1109-1120, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27333205

RESUMEN

This study used several real-time and filter-based aerosol instruments to measure PM2.5 levels in a high-rise residential green building in the Northeastern US and compared performance of those instruments. PM2.5 24-hr average concentrations were determined using a Personal Modular Impactor (PMI) with 2.5 µm cut (SKC Inc., Eighty Four, PA) and a direct reading pDR-1500 (Thermo Scientific, Franklin, MA) as well as its filter. 1-hr average PM2.5 concentrations were measured in the same apartments with an Aerotrak Optical Particle Counter (OPC) (model 8220, TSI, Inc., Shoreview, MN) and a DustTrak DRX mass monitor (model 8534, TSI, Inc., Shoreview, MN). OPC and DRX measurements were compared with concurrent 1-hr mass concentration from the pDR-1500. The pDR-1500 direct reading showed approximately 40% higher particle mass concentration compared to its own filter (n = 41), and 25% higher PM2.5 mass concentration compared to the PMI2.5 filter. The pDR-1500 direct reading and PMI2.5 in non-smoking homes (self-reported) were not significantly different (n = 10, R2 = 0.937), while the difference between measurements for smoking homes was 44% (n = 31, R2 = 0.773). Both OPC and DRX data had substantial and significant systematic and proportional biases compared with pDR-1500 readings. However, these methods were highly correlated: R2 = 0.936 for OPC versus pDR-1500 reading and R2 = 0.863 for DRX versus pDR-1500 reading. The data suggest that accuracy of aerosol mass concentrations from direct-reading instruments in indoor environments depends on the instrument, and that correction factors can be used to reduce biases of these real-time monitors in residential green buildings with similar aerosol properties. IMPLICATIONS: This study used several real-time and filter-based aerosol instruments to measure PM2.5 levels in a high-rise residential green building in the northeastern United States and compared performance of those instruments. The data show that while the use of real-time monitors is convenient for measurement of airborne PM at short time scales, the accuracy of those monitors depends on a particular instrument. Bias correction factors identified in this paper could provide guidance for other studies using direct-reading instruments to measure PM concentrations.


Asunto(s)
Contaminación del Aire Interior/análisis , Exposición a Riesgos Ambientales , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Aerosoles/análisis , Vivienda , Mid-Atlantic Region , Tamaño de la Partícula
7.
Risk Anal ; 24(5): 1323-35, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15563298

RESUMEN

Comparative risk projects can provide broad policy guidance but they rarely have adequate scientific foundations to support precise risk rankings. Many extant projects report rankings anyway, with limited attention to uncertainty. Stochastic uncertainty, structural uncertainty, and ignorance are types of incertitude that afflict risk comparisons. The recently completed New Jersey Comparative Risk Project was innovative in trying to acknowledge and accommodate some historically ignored uncertainties in a substantive manner. This article examines the methods used and lessons learned from the New Jersey project. Monte Carlo techniques were used to characterize stochastic uncertainty, and sensitivity analysis helped to manage structural uncertainty. A deliberative process and a sorting technique helped manage ignorance. Key findings are that stochastic rankings can be calculated but they reveal such an alarming degree of imprecision that the rankings are no longer useful, whereas sorting techniques are helpful in spite of uncertainty. A deliberative process is helpful to counter analytical overreaching.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA