RESUMEN
OBJECTIVE: To compare the frequency of rare variants in genes of the pathophysiologically relevant endosomal Toll-like receptor (eTLR) pathway and any quantifiable differences in variant rarity, predicted deleteriousness, or molecular proximity in patients with systemic lupus erythematosus (SLE) and healthy controls. PATIENTS AND METHODS: 65 genes associated with the eTLR pathway were identified by literature search and pathway analysis. Using next generation sequencing techniques, these were compared in two randomised cohorts of patients with SLE (n = 114 and n = 113) with 197 healthy controls. Genetically determined ethnicity was used to normalise minor allele frequencies (MAF) for the identified genetic variants and these were then compared by their frequency: rare (MAF < 0.005), uncommon (MAF 0.005-0.02), and common (MAF >0.02). This was compared to the results for 65 randomly selected genes. RESULTS: Patients with SLE are more likely to carry a rare nonsynonymous variant affecting proteins within the eTLR pathway than healthy controls. Furthermore, individuals with SLE are more likely to have multiple rare variants in this pathway. There were no differences in rarity, Combined Annotation Dependent Depletion (CADD) score, or molecular proximity for rare eTLR pathway variants. CONCLUSIONS: Rare non-synonymous variants are enriched in patients with SLE in the eTLR pathway. This supports the hypothesis that SLE arises from several rare variants of relatively large effect rather than many common variants of small effect.
Asunto(s)
Lupus Eritematoso Sistémico , Receptores Toll-Like , Endosomas/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lupus Eritematoso Sistémico/genética , Mutación , Receptores Toll-Like/genéticaRESUMEN
The Ice Free Corridor has been invoked as a route for Pleistocene human and animal dispersals between eastern Beringia and more southerly areas of North America. Despite the significance of the corridor, there are limited data for when and how this corridor was used. Hypothetical uses of the corridor include: the first expansion of humans from Beringia into the Americas, northward postglacial expansions of fluted point technologies into Beringia, and continued use of the corridor as a contact route between the north and south. Here, we use radiocarbon dates and ancient mitochondrial DNA from late Pleistocene bison fossils to determine the chronology for when the corridor was open and viable for biotic dispersals. The corridor was closed after â¼23,000 until 13,400 calendar years ago (cal y BP), after which we find the first evidence, to our knowledge, that bison used this route to disperse from the south, and by 13,000 y from the north. Our chronology supports a habitable and traversable corridor by at least 13,000 cal y BP, just before the first appearance of Clovis technology in interior North America, and indicates that the corridor would not have been available for significantly earlier southward human dispersal. Following the opening of the corridor, multiple dispersals of human groups between Beringia and interior North America may have continued throughout the latest Pleistocene and early Holocene. Our results highlight the utility of phylogeographic analyses to test hypotheses about paleoecological history and the viability of dispersal routes over time.
Asunto(s)
Bison/genética , Animales , Canadá , ADN Mitocondrial/genética , Fósiles , FilogeografíaRESUMEN
Viruses preserved in ancient materials provide snapshots of past viral diversity and a means to trace viral evolution through time. Here, we use a metagenomics approach to identify filterable and nuclease-resistant nucleic acids preserved in 700-y-old caribou feces frozen in a permanent ice patch. We were able to recover and characterize two viruses in replicated experiments performed in two different laboratories: a small circular DNA viral genome (ancient caribou feces associated virus, or aCFV) and a partial RNA viral genome (Ancient Northwest Territories cripavirus, or aNCV). Phylogenetic analysis identifies aCFV as distantly related to the plant-infecting geminiviruses and the fungi-infecting Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 and aNCV as within the insect-infecting Cripavirus genus. We hypothesize that these viruses originate from plant material ingested by caribou or from flying insects and that their preservation can be attributed to protection within viral capsids maintained at cold temperatures. To investigate the tropism of aCFV, we used the geminiviral reverse genetic system and introduced a multimeric clone into the laboratory model plant Nicotiana benthamiana. Evidence for infectivity came from the detection of viral DNA in newly emerged leaves and the precise excision of the viral genome from the multimeric clones in inoculated leaves. Our findings indicate that viral genomes may in some circumstances be protected from degradation for centuries.
Asunto(s)
Heces/virología , Genoma Viral , Animales , Regiones Árticas , Datos de Secuencia Molecular , RenoRESUMEN
For decades, the peopling of the Americas has been explored through the analysis of uniparentally inherited genetic systems in Native American populations and the comparison of these genetic data with current linguistic groupings. In northern North America, two language families predominate: Eskimo-Aleut and Na-Dene. Although the genetic evidence from nuclear and mtDNA loci suggest that speakers of these language families share a distinct biological origin, this model has not been examined using data from paternally inherited Y chromosomes. To test this hypothesis and elucidate the migration histories of Eskimoan- and Athapaskan-speaking populations, we analyzed Y-chromosomal data from Inuvialuit, Gwich'in, and Tlich populations living in the Northwest Territories of Canada. Over 100 biallelic markers and 19 chromosome short tandem repeats (STRs) were genotyped to produce a high-resolution dataset of Y chromosomes from these groups. Among these markers is an SNP discovered in the Inuvialuit that differentiates them from other Aboriginal and Native American populations. The data suggest that Canadian Eskimoan- and Athapaskan-speaking populations are genetically distinct from one another and that the formation of these groups was the result of two population expansions that occurred after the initial movement of people into the Americas. In addition, the population history of Athapaskan speakers is complex, with the Tlich being distinct from other Athapaskan groups. The high-resolution biallelic data also make clear that Y-chromosomal diversity among the first Native Americans was greater than previously recognized.
Asunto(s)
Cromosomas Humanos Y/genética , Variación Genética , Indígenas Norteamericanos/genética , Inuk/genética , Filogenia , Canadá , Cromosomas Humanos Par 19/genética , Emigración e Inmigración , Frecuencia de los Genes , Genética de Población/métodos , Genotipo , Geografía , Haplotipos/genética , Humanos , Masculino , Repeticiones de Microsatélite/genética , Mutación , Tasa de Mutación , Polimorfismo de Nucleótido SimpleRESUMEN
We identify an intronic deletion in VANGL1 that predisposes to renal injury in high risk populations through a kidney-intrinsic process. Half of all SLE patients develop nephritis, yet the predisposing mechanisms to kidney damage remain poorly understood. There is limited evidence of genetic contribution to specific organ involvement in SLE.1,2 We identify a large deletion in intron 7 of Van Gogh Like 1 (VANGL1), which associates with nephritis in SLE patients. The same deletion occurs at increased frequency in an indigenous population (Tiwi Islanders) with 10-fold higher rates of kidney disease compared with non-indigenous populations. Vangl1 hemizygosity in mice results in spontaneous IgA and IgG deposition within the glomerular mesangium in the absence of autoimmune nephritis. Serum transfer into B cell-deficient Vangl1+/- mice results in mesangial IgG deposition indicating that Ig deposits occur in a kidney-intrinsic fashion in the absence of Vangl1. These results suggest that Vangl1 acts in the kidney to prevent Ig deposits and its deficiency may trigger nephritis in individuals with SLE.
Asunto(s)
Anticuerpos/efectos adversos , Proteínas Portadoras/genética , Eliminación de Gen , Enfermedades Renales/patología , Proteínas de la Membrana/genética , Adulto , Anciano , Animales , Biopsia , Estudios de Cohortes , Variaciones en el Número de Copia de ADN/genética , Homocigoto , Humanos , Intrones/genética , Riñón/metabolismo , Riñón/patología , Nefritis Lúpica/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Factores de RiesgoRESUMEN
The role unconventional T cells play in protective immunity in humans is unclear. Mucosal-associated invariant T (MAIT) cells are an unconventional T cell subset restricted to the antigen-presenting molecule MR1. Here, we report the discovery of a patient homozygous for a rare Arg31His (R9H in the mature protein) mutation in MR1 who has a history of difficult-to-treat viral and bacterial infections. MR1R9H was unable to present the potent microbially derived MAIT cell stimulatory ligand. The MR1R9H crystal structure revealed that the stimulatory ligand cannot bind due to the mutation lying within, and causing structural perturbation to, the ligand-binding domain of MR1. While MR1R9H could bind and be up-regulated by a MAIT cell inhibitory ligand, the patient lacked circulating MAIT cells. This shows the importance of the stimulatory ligand for MAIT cell selection in humans. The patient had an expanded γδ T cell population, indicating a compensatory interplay between these unconventional T cell subsets.
Asunto(s)
Antígenos de Histocompatibilidad Clase I/genética , Linfocitos Intraepiteliales/inmunología , Antígenos de Histocompatibilidad Menor/genética , Células T Invariantes Asociadas a Mucosa , Enfermedades de Inmunodeficiencia Primaria/genética , Humanos , Mutación Puntual , Enfermedades de Inmunodeficiencia Primaria/inmunologíaRESUMEN
Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease. It is thought that many common variant gene loci of weak effect act additively to predispose to common autoimmune diseases, while the contribution of rare variants remains unclear. Here we describe that rare coding variants in lupus-risk genes are present in most SLE patients and healthy controls. We demonstrate the functional consequences of rare and low frequency missense variants in the interacting proteins BLK and BANK1, which are present alone, or in combination, in a substantial proportion of lupus patients. The rare variants found in patients, but not those found exclusively in controls, impair suppression of IRF5 and type-I IFN in human B cell lines and increase pathogenic lymphocytes in lupus-prone mice. Thus, rare gene variants are common in SLE and likely contribute to genetic risk.