Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 596(7871): 262-267, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34349263

RESUMEN

Regulated cell death is an integral part of life, and has broad effects on organism development and homeostasis1. Malfunctions within the regulated cell death process, including the clearance of dying cells, can manifest in diverse pathologies throughout various tissues including the gastrointestinal tract2. A long appreciated, yet elusively defined relationship exists between cell death and gastrointestinal pathologies with an underlying microbial component3-6, but the direct effect of dying mammalian cells on bacterial growth is unclear. Here we advance a concept that several Enterobacteriaceae, including patient-derived clinical isolates, have an efficient growth strategy to exploit soluble factors that are released from dying gut epithelial cells. Mammalian nutrients released after caspase-3/7-dependent apoptosis boosts the growth of multiple Enterobacteriaceae and is observed using primary mouse colonic tissue, mouse and human cell lines, several apoptotic triggers, and in conventional as well as germ-free mice in vivo. The mammalian cell death nutrients induce a core transcriptional response in pathogenic Salmonella, and we identify the pyruvate formate-lyase-encoding pflB gene as a key driver of bacterial colonization in three contexts: a foodborne infection model, a TNF- and A20-dependent cell death model, and a chemotherapy-induced mucositis model. These findings introduce a new layer to the complex host-pathogen interaction, in which death-induced nutrient release acts as a source of fuel for intestinal bacteria, with implications for gut inflammation and cytotoxic chemotherapy treatment.


Asunto(s)
Apoptosis , Enterobacteriaceae/crecimiento & desarrollo , Enterobacteriaceae/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Intestinos/citología , Intestinos/microbiología , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Animales , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/patología , Femenino , Enfermedades Transmitidas por los Alimentos/microbiología , Vida Libre de Gérmenes , Interacciones Huésped-Patógeno , Inflamación/metabolismo , Inflamación/microbiología , Inflamación/patología , Masculino , Ratones , Mucositis/inducido químicamente , Salmonella/enzimología , Salmonella/genética , Salmonella/crecimiento & desarrollo , Salmonella/metabolismo , Transcriptoma , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
BMC Cancer ; 19(1): 598, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31208373

RESUMEN

BACKGROUND: NANOS3 is a gene conserved throughout evolution. Despite the quite low conservation of Nanos sequences between different organisms and even between Nanos paralogs, their role in germ cell development is remarkably universal. Human Nanos3 expression is normally restricted to the gonads and the brain. However, ectopic activation of this gene has been detected in various human cancers. Until now, Nanos3 and other Nanos proteins have been studied almost exclusively in germ cell development. METHODS: Transgenic mice were generated by targeted insertion of a human Nanos3 cDNA into the ROSA26 locus. The transgene could be spatiotemporally induced by Cre recombinase activity removing an upstream floxed STOP cassette. A lung tumor model with ectopic Nanos3 expression was based on the lung-specific activation of the reverse tetracycline transactivator gene, in combination with a tetO-CMV promoter controlling Cre expression. When doxycycline was provided to the mice, Cre was activated leading to deletion of TP53 alleles and activation of both oncogenic KRasG12D and Nanos3. Appropriate controls were foreseen. Tumors and tumor-derived cell cultures were analyzed in various ways. RESULTS: We describe the successful generation of Nanos3LSL/- and Nanos3LSL/LSL mice in which an exogenous human NANOS3 gene can be activated in vivo upon Cre expression. These mice, in combination with different conditional and doxycycline-inducible Cre lines, allow the study of the role of ectopic Nanos3 expression in several cancer types. The Nanos3LSL mice were crossed with a non-small cell lung cancer (NSCLC) mouse model based on conditional expression of oncogenic KRas and homozygous loss of p53. This experiment demonstrated that ectopic expression of Nanos3 in the lungs has a significant negative effect on survival. Enhanced bronchiolar dysplasia was observed when Nanos3-expressing NSCLC mice were compared with control NSCLC mice. An allograft experiment, performed with cell cultures derived from primary lung tumors of control and Nanos3-expressing NSCLC mice, revealed lymph node metastasis in mice injected with Nanos3-expressing NSCLC cells. CONCLUSIONS: A new mouse model was generated allowing examination of Nanos3-associated pathways and investigation of the influence of ectopic Nanos3 expression in various cancer types. This model might identify Nanos3 as an interesting target in cancer therapeutics.


Asunto(s)
Expresión Génica Ectópica , Ratones , Neoplasias Experimentales/genética , Proteínas de Unión al ARN/genética , Aloinjertos , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Doxiciclina/farmacología , Femenino , Humanos , Integrasas , Estimación de Kaplan-Meier , Neoplasias Pulmonares/genética , Masculino , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Transducción de Señal/efectos de los fármacos , Transgenes , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética
3.
PLoS Genet ; 12(8): e1006243, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27556156

RESUMEN

E-cadherin-mediated cell-cell adhesion is critical for naive pluripotency of cultured mouse embryonic stem cells (mESCs). E-cadherin-depleted mESC fail to downregulate their pluripotency program and are unable to initiate lineage commitment. To further explore the roles of cell adhesion molecules during mESC differentiation, we focused on p120 catenin (p120ctn). Although one key function of p120ctn is to stabilize and regulate cadherin-mediated cell-cell adhesion, it has many additional functions, including regulation of transcription and Rho GTPase activity. Here, we investigated the role of mouse p120ctn in early embryogenesis, mESC pluripotency and early fate determination. In contrast to the E-cadherin-null phenotype, p120ctn-null mESCs remained pluripotent, but their in vitro differentiation was incomplete. In particular, they failed to form cystic embryoid bodies and showed defects in primitive endoderm formation. To pinpoint the underlying mechanism, we undertook a structure-function approach. Rescue of p120ctn-null mESCs with different p120ctn wild-type and mutant expression constructs revealed that the long N-terminal domain of p120ctn and its regulatory domain for RhoA were dispensable, whereas its armadillo domain and interaction with E-cadherin were crucial for primitive endoderm formation. We conclude that p120ctn is not only an adaptor and regulator of E-cadherin, but is also indispensable for proper lineage commitment.


Asunto(s)
Cadherinas/genética , Cateninas/genética , Diferenciación Celular/genética , Endodermo/crecimiento & desarrollo , Células Madre Embrionarias de Ratones , Animales , Blastocisto/metabolismo , Cadherinas/biosíntesis , Cateninas/biosíntesis , Adhesión Celular/genética , Linaje de la Célula/genética , Polaridad Celular/genética , Cuerpos Embrioides/metabolismo , Desarrollo Embrionario/genética , Endodermo/metabolismo , Humanos , Ratones , Imagen Óptica , Células Madre Pluripotentes/metabolismo , Proteína de Unión al GTP rhoA/biosíntesis , Proteína de Unión al GTP rhoA/genética , Catenina delta
4.
J Pathol ; 237(1): 25-37, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25904364

RESUMEN

We have explored the role of the human NANOS3 gene in lung tumour progression. We show that NANOS3 is over-expressed by invasive lung cancer cells and is a prognostic marker for non-small cell lung carcinomas (NSCLCs). NANOS3 gene expression is restricted in testis and brain and is regulated by epigenetic events. It is up-regulated in cultured cells undergoing epithelial - mesenchymal transition (EMT). NANOS3 over-expression in human NSCLC cell lines enhances their invasiveness by up-regulating EMT, whereas its silencing induces mesenchymal - epithelial transition. NANOS3 represses E-cadherin at the transcriptional level and up-regulates vimentin post-transcriptionally. Also, we show that NANOS3 binds mRNAs encoding vimentin and regulates the length of their poly(A) tail. Finally, NANOS3 can also protect vimentin mRNA from microRNA-mediated repression. We thus demonstrate a role for NANOS3 in the acquisition of invasiveness by human lung tumour cells and propose a new mechanism of post-transcriptional regulation of EMT.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Movimiento Celular , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/metabolismo , Proteínas de Unión al ARN/metabolismo , Vimentina/metabolismo , Antígenos CD , Cadherinas/genética , Cadherinas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Invasividad Neoplásica , Pronóstico , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Transfección , Vimentina/genética
5.
BMC Cancer ; 15: 391, 2015 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-25958384

RESUMEN

BACKGROUND: NBPF1 (Neuroblastoma Breakpoint Family, member 1) was originally identified in a neuroblastoma patient on the basis of its disruption by a chromosomal translocation t(1;17)(p36.2;q11.2). Considering this genetic defect and the frequent genomic alterations of the NBPF1 locus in several cancer types, we hypothesized that NBPF1 is a tumor suppressor. Decreased expression of NBPF1 in neuroblastoma cell lines with loss of 1p36 heterozygosity and the marked decrease of anchorage-independent clonal growth of DLD1 colorectal carcinoma cells with induced NBPF1 expression further suggest that NBPF1 functions as tumor suppressor. However, little is known about the mechanisms involved. METHODS: Expression of NBPF was analyzed in human skin and human cervix by immunohistochemistry. The effects of NBPF1 on the cell cycle were evaluated by flow cytometry. We investigated by real-time quantitative RT-PCR the expression profile of a panel of genes important in cell cycle regulation. Protein levels of CDKN1A-encoded p21(CIP1/WAF1) were determined by western blotting and the importance of p53 was shown by immunofluorescence and by a loss-of-function approach. LC-MS/MS analysis was used to investigate the proteome of DLD1 colon cancer cells with induced NBPF1 expression. Possible biological interactions between the differentially regulated proteins were investigated with the Ingenuity Pathway Analysis tool. RESULTS: We show that NBPF is expressed in the non-proliferative suprabasal layers of squamous stratified epithelia of human skin and cervix. Forced expression of NBPF1 in HEK293T cells resulted in a G1 cell cycle arrest that was accompanied by upregulation of the cyclin-dependent kinase inhibitor p21(CIP1/WAF1) in a p53-dependent manner. Additionally, forced expression of NBPF1 in two p53-mutant neuroblastoma cell lines also resulted in a G1 cell cycle arrest and CDKN1A upregulation. However, CDKN1A upregulation by NBPF1 was not observed in the DLD1 cells, which demonstrates that NBPF1 exerts cell-specific effects. In addition, proteome analysis of NBPF1-overexpressing DLD1 cells identified 32 differentially expressed proteins, of which several are implicated in carcinogenesis. CONCLUSIONS: We demonstrated that NBPF1 exerts different tumor suppressive effects, depending on the cell line analyzed, and provide new clues into the molecular mechanism of the enigmatic NBPF proteins.


Asunto(s)
Proteínas Portadoras/genética , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Neuroblastoma/genética , Proteínas Supresoras de Tumor/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Epitelio/metabolismo , Epitelio/patología , Expresión Génica , Genes Reporteros , Células HEK293 , Humanos , Familia de Multigenes , Neuroblastoma/metabolismo , Proteoma , Proteómica , Transducción de Señal , Transfección , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo
6.
Cardiovasc Res ; 120(6): 612-622, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38400709

RESUMEN

AIMS: Heart failure (HF) and cancer are the leading causes of death worldwide. Epidemiological studies revealed that HF patients are prone to develop cancer. Preclinical studies provided some insights into this connection, but the exact mechanisms remain elusive. In colorectal cancer (CRC), gut microbial dysbiosis is linked to cancer progression and recent studies have shown that HF patients display microbial dysbiosis. This current study focussed on the effects of HF-induced microbial dysbiosis on colonic tumour formation. METHODS AND RESULTS: C57BL/6J mice were subjected to myocardial infarction (MI), with sham surgery as control. After six weeks faeces were collected, processed for 16 s rRNA sequencing, and pooled for faecal microbiota transplantation. CRC tumour growth was provoked in germ-free mice by treating them with Azoxymethane/Dextran sodium sulphate. The CRC mice were transplanted with faeces from MI or sham mice. MI-induced HF resulted in microbial dysbiosis, characterized by a decreased α-diversity and microbial alterations on the genus level, several of which have been associated with CRC. We then performed faecal microbiota transplantation with faeces from HF mice in CRC mice, which resulted in a higher endoscopic disease score and an increase in the number of tumours in CRC mice. CONCLUSION: We demonstrated that MI-induced HF contributes to colonic tumour formation by altering the gut microbiota composition, providing a mechanistic explanation for the observed association between HF and increased risk for cancer. Targeting the microbiome may present as a tool to mitigate HF-associated co-morbidities, especially cancer.


Asunto(s)
Colon , Modelos Animales de Enfermedad , Disbiosis , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Insuficiencia Cardíaca , Ratones Endogámicos C57BL , Infarto del Miocardio , Animales , Infarto del Miocardio/patología , Infarto del Miocardio/microbiología , Insuficiencia Cardíaca/microbiología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/etiología , Masculino , Colon/microbiología , Colon/patología , Ribotipificación , Neoplasias del Colon/patología , Neoplasias del Colon/microbiología , Bacterias/genética , Heces/microbiología , Interacciones Huésped-Patógeno
7.
Microbiome ; 11(1): 138, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37408070

RESUMEN

BACKGROUND: Following solid organ transplantation, tacrolimus (TAC) is an essential drug in the immunosuppressive strategy. Its use constitutes a challenge due to its narrow therapeutic index and its high inter- and intra-pharmacokinetic (PK) variability. As the contribution of the gut microbiota to drug metabolism is now emerging, it might be explored as one of the factors explaining TAC PK variability. Herein, we explored the consequences of TAC administration on the gut microbiota composition. Reciprocally, we studied the contribution of the gut microbiota to TAC PK, using a combination of in vivo and in vitro models. RESULTS: TAC oral administration in mice resulted in compositional alterations of the gut microbiota, namely lower evenness and disturbance in the relative abundance of specific bacterial taxa. Compared to controls, mice with a lower intestinal microbial load due to antibiotics administration exhibit a 33% reduction in TAC whole blood exposure and a lower inter-individual variability. This reduction in TAC levels was strongly correlated with higher expression of the efflux transporter ABCB1 (also known as the p-glycoprotein (P-gp) or the multidrug resistance protein 1 (MDR1)) in the small intestine. Conventionalization of germ-free mice confirmed the ability of the gut microbiota to downregulate ABCB1 expression in a site-specific fashion. The functional inhibition of ABCB1 in vivo by zosuquidar formally established the implication of this efflux transporter in the modulation of TAC PK by the gut microbiota. Furthermore, we showed that polar bacterial metabolites could recapitulate the transcriptional regulation of ABCB1 by the gut microbiota, without affecting its functionality. Finally, whole transcriptome analyses pinpointed, among others, the Constitutive Androstane Receptor (CAR) as a transcription factor likely to mediate the impact of the gut microbiota on ABCB1 transcriptional regulation. CONCLUSIONS: We highlight for the first time how the modulation of ABCB1 expression by bacterial metabolites results in changes in TAC PK, affecting not only blood levels but also the inter-individual variability. More broadly, considering the high number of drugs with unexplained PK variability transported by ABCB1, our work is of clinical importance and paves the way for incorporating the gut microbiota in prediction algorithms for dosage of such drugs. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Tacrolimus , Animales , Ratones , Tacrolimus/farmacocinética , Citocromo P-450 CYP3A , Inmunosupresores/farmacocinética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Proteínas de Transporte de Membrana
8.
Front Immunol ; 14: 1272639, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090573

RESUMEN

Background: Autoinflammation with infantile enterocolitis (AIFEC) is an often fatal disease caused by gain-of-function mutations in the NLRC4 inflammasome. This inflammasomopathy is characterized by macrophage activation syndrome (MAS)-like episodes as well as neonatal-onset enterocolitis. Although elevated IL-18 levels were suggested to take part in driving AIFEC pathology, the triggers for IL-18 production and its ensuing pathogenic effects in these patients are incompletely understood. Methods: Here, we developed and characterized a novel genetic mouse model expressing a murine version of the AIFEC-associated NLRC4V341A mutation from its endogenous Nlrc4 genomic locus. Results: NLRC4V341A expression in mice recapitulated increased circulating IL-18 levels as observed in AIFEC patients. Housing NLRC4V341A-expressing mice in germfree (GF) conditions showed that these systemic IL-18 levels were independent of the microbiota, and unmasked an additional IL-18-inducing effect of NLRC4V341A expression in the intestines. Remarkably, elevated IL-18 levels did not provoke detectable intestinal pathologies in NLRC4V341A-expressing mice, even not upon genetically ablating IL-18 binding protein (IL-18BP), which is an endogenous IL-18 inhibitor that has been used therapeutically in AIFEC. In addition, NLRC4V341A expression did not alter susceptibility to the NLRC4-activating gastrointestinal pathogens Salmonella Typhimurium and Citrobacter rodentium. Conclusion: As observed in AIFEC patients, mice expressing a murine NLRC4V341A mutant show elevated systemic IL-18 levels, suggesting that the molecular mechanisms by which this NLRC4V341A mutant induces excessive IL-18 production are conserved between humans and mice. However, while our GF and infection experiments argue against a role for commensal or pathogenic bacteria, identifying the triggers and mechanisms that synergize with IL-18 to drive NLRC4V341A-associated pathologies will require further research in this NLRC4V341A mouse model.


Asunto(s)
Enterocolitis , Síndrome de Activación Macrofágica , Humanos , Ratones , Recién Nacido , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Mutación , Síndrome de Activación Macrofágica/genética , Enterocolitis/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo
9.
EMBO Mol Med ; 15(10): e17691, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37694693

RESUMEN

Arthritis is the most common extra-intestinal complication in inflammatory bowel disease (IBD). Conversely, arthritis patients are at risk for developing IBD and often display subclinical gut inflammation. These observations suggest a shared disease etiology, commonly termed "the gut-joint-axis." The clinical association between gut and joint inflammation is further supported by the success of common therapeutic strategies and microbiota dysbiosis in both conditions. Most data, however, support a correlative relationship between gut and joint inflammation, while causative evidence is lacking. Using two independent transgenic mouse arthritis models, either TNF- or IL-1ß dependent, we demonstrate that arthritis develops independently of the microbiota and intestinal inflammation, since both lines develop full-blown articular inflammation under germ-free conditions. In contrast, TNF-driven gut inflammation is fully rescued in germ-free conditions, indicating that the microbiota is driving TNF-induced gut inflammation. Together, our study demonstrates that although common inflammatory pathways may drive both gut and joint inflammation, the molecular triggers initiating such pathways are distinct in these tissues.

10.
Exp Cell Res ; 316(7): 1225-33, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20096688

RESUMEN

The NBPF genes are members of a gene family that underwent a remarkable increase in their copy number during recent primate evolution. The NBPF proteins contain 5 to 40 copies of a domain known as the NBPF repeat or DUF1220. Very little is known about the function of these domains or about the NBPF proteins. We performed a yeast two-hybrid screening with the aminoterminal domain of NBPF11 and found that Chibby, a documented repressor of Wnt signaling, interacts with multiple NBPF proteins. More specifically, a coiled-coil region in the NBPF proteins interacts with the coiled-coil domain in the carboxyterminal region of Chibby. Nonetheless, this interaction did not influence the repressor function of Chibby in a TOPFLASH reporter assay. Using Chibby as bait in a new yeast two-hybrid screening, we identified clusterin as a binding protein. Chibby and clusterin were co-immunoprecipitated with NBPF1, suggesting the formation of a tri-molecular complex. Although we have not pinpointed the role of these mutual interactions, the possible formation of a macromolecular complex of three candidate tumor suppressor proteins, including the enigmatic NBPF1, points at important functional implications.


Asunto(s)
Proteínas Portadoras/metabolismo , Clusterina/metabolismo , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Portadoras/química , Células Cultivadas , Células HeLa , Humanos , Inmunoprecipitación , Modelos Biológicos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Neuroblastoma/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Transducción de Señal/fisiología , Distribución Tisular , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/fisiología
11.
Mol Biol Evol ; 26(6): 1321-32, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19282512

RESUMEN

Most new genes arise through the duplication of existing genes. In most cases, the duplication is not limited to the coding sequence but encompasses the regulatory region as well. The NBPF gene family has expanded during recent primate evolution, and it has no known mouse ortholog. One of its members, NBPF1, was found to be disrupted by a constitutional translocation in a neuroblastoma patient. Here, we show that the ancestral NBPF gene copied the regulatory region from an unrelated gene, EVI5, after the split between simians and prosimians but before simian radiation. Phylogenetic analysis points to the possible involvement of positive selection acting on the NBPF1 promoter in the simian lineage. We previously showed decreased NBPF1 expression in certain neuroblastoma cell lines. Here, we show that this expression pattern is mimicked by the EVI5 gene, but partly by different mechanisms. Epigenetic regulation of the EVI5 promoter is common in neuroblastoma cell lines, but it is not for the NBPF promoters. Here, we describe the recent acquisition of the NBPF1 promoter from an unrelated gene, and remarkably, both the donor (EVI5) and acceptor (NBPF1) genes are disrupted by constitutional translocations in patients with neuroblastoma, suggesting a functional link between these genes and the disease.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Especiación Genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Animales , Secuencia de Bases , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proteínas Activadoras de GTPasa , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Datos de Secuencia Molecular , Neuroblastoma , Filogenia , Reacción en Cadena de la Polimerasa , Primates , Translocación Genética
12.
Cancer Res ; 80(14): 2983-2995, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32503808

RESUMEN

Epithelial-to-mesenchymal transition (EMT)-inducing transcription factors (TF) are well known for their ability to induce mesenchymal states associated with increased migratory and invasive properties. Unexpectedly, nuclear expression of the EMT-TF ZEB2 in human primary melanoma has been shown to correlate with reduced invasion. We report here that ZEB2 is required for outgrowth for primary melanomas and metastases at secondary sites. Ablation of Zeb2 hampered outgrowth of primary melanomas in vivo, whereas ectopic expression enhanced proliferation and growth at both primary and secondary sites. Gain of Zeb2 expression in pulmonary-residing melanoma cells promoted the development of macroscopic lesions. In vivo fate mapping made clear that melanoma cells undergo a conversion in state where ZEB2 expression is replaced by ZEB1 expression associated with gain of an invasive phenotype. These findings suggest that reversible switching of the ZEB2/ZEB1 ratio enhances melanoma metastatic dissemination. SIGNIFICANCE: ZEB2 function exerts opposing behaviors in melanoma by promoting proliferation and expansion and conversely inhibiting invasiveness, which could be of future clinical relevance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/14/2983/F1.large.jpg.


Asunto(s)
Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/secundario , Melanoma/patología , Factores de Transcripción/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Animales , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Melanoma/genética , Melanoma/metabolismo , Ratones , Invasividad Neoplásica , Factores de Transcripción/genética , Células Tumorales Cultivadas , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética
14.
PLoS One ; 3(5): e2207, 2008 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-18493581

RESUMEN

The human 1p36 region is deleted in many different types of tumors, and so it probably harbors one or more tumor suppressor genes. In a Belgian neuroblastoma patient, a constitutional balanced translocation t(1;17)(p36.2;q11.2) may have led to the development of the tumor by disrupting or activating a gene. Here, we report the cloning of both translocation breakpoints and the identification of a novel gene that is disrupted by this translocation. This gene, named NBPF1 for Neuroblastoma BreakPoint Family member 1, belongs to a recently described gene family encoding highly similar proteins, the functions of which are unknown. The translocation truncates NBPF1 and gives rise to two chimeric transcripts of NBPF1 sequences fused to sequences derived from chromosome 17. On chromosome 17, the translocation disrupts one of the isoforms of ACCN1, a potential glioma tumor suppressor gene. Expression of the NBPF family in neuroblastoma cell lines is highly variable, but it is decreased in cell lines that have a deletion of chromosome 1p. More importantly, expression profiling of the NBPF1 gene showed that its expression is significantly lower in cell lines with heterozygous NBPF1 loss than in cell lines with a normal 1p chromosome. Meta-analysis of the expression of NBPF and ACCN1 in neuroblastoma tumors indicates a role for the NBPF genes and for ACCN1 in tumor aggressiveness. Additionally, DLD1 cells with inducible NBPF1 expression showed a marked decrease of clonal growth in a soft agar assay. The disruption of both NBPF1 and ACCN1 genes in this neuroblastoma patient indicates that these genes might suppress development of neuroblastoma and possibly other tumor types.


Asunto(s)
Cromosomas Humanos Par 17 , Cromosomas Humanos Par 1 , Canales Epiteliales de Sodio/genética , Proteínas de Neoplasias/genética , Proteínas del Tejido Nervioso/genética , Neuroblastoma/genética , Translocación Genética , Canales Iónicos Sensibles al Ácido , Secuencia de Bases , División Celular/genética , Línea Celular Tumoral , Cartilla de ADN , Canales de Sodio Degenerina , Humanos , Células Híbridas , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA