Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chemistry ; 30(23): e202304163, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38258332

RESUMEN

Ectoine synthase (EctC) catalyses the ultimate step of ectoine biosynthesis, a kosmotropic compound produced as compatible solute by many bacteria and some archaea or eukaryotes. EctC is an Fe2+-dependent homodimeric cytoplasmic protein. Using Mössbauer spectroscopy, molecular dynamics simulations and QM/MM calculations, we determined the most likely coordination number and geometry of the Fe2+ ion and proposed a mechanism of the EctC-catalysed reaction. Most notably, we show that apart from the three amino acids binding to the iron ion (Glu57, Tyr84 and His92), one water molecule and one hydroxide ion are required as additional ligands for the reaction to occur. They fill the first coordination sphere of the Fe2+-cofactor and act as critical proton donors and acceptors during the cyclization reaction.


Asunto(s)
Aminoácidos Diaminos , Hidroliasas , Hierro , Simulación de Dinámica Molecular , Aminoácidos Diaminos/química , Aminoácidos Diaminos/metabolismo , Hierro/química , Hierro/metabolismo , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/química , Biocatálisis , Bacterias/enzimología , Catálisis , Ciclización , Ligandos , Agua/química
2.
Phys Chem Chem Phys ; 25(33): 21935-21943, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37551546

RESUMEN

Quinone redox reactions involve a semiquinone (SQ) intermediate state. The catalytic sites in enzymes stabilize the SQ state via various molecular interactions, such as hydrogen bonding to oxygens of the two carbonyls of the benzoquinone ring. To understand how these interactions contribute to SQ stabilization, we examined SQ in the quinone reduction site (Qi) of cytochrome bc1 using electron paramagnetic resonance (ESEEM, HYSCORE) at the X-band and quantum mechanical (QM) calculations. We compared native enzyme (WT) with a H217R mutant (replacement of histidine that interacts with one carbonyl of the occupant of Qi to arginine) in which the SQ stability has previously been shown to markedly increase. The 14N region of the HYSCORE 2D spectrum for SQi in WT had a shape typical of histidine residue, while in H217R, the spectrum shape changed significantly and appeared similar to the pattern described for SQ liganded natively by arginine in cytochrome bo3. Parametrization of hyperfine and quadrupolar interactions of SQi with surrounding magnetic nuclei (1H, 14N) allowed us to assign specific nitrogens of H217 or R217 as ligands of SQi in WT and H217R, respectively. This was further substantiated by qualitative agreement between the experimental (EPR-derived) and theoretical (QM-derived) parameters. The proton (1H) region of the HYSCORE spectrum in both WT and H217R was very similar and indicative of interactions with two protons, which in view of the QM calculations, were identified as directly involved in the formation of a H-bond with the two carbonyl oxygens of SQ (interaction of H217 or R217 with O4 and D252 with O1). In view of these assignments, we explain how different SQ ligands effectively influence SQ stability. We also propose that the characteristic X-band HYSCORE pattern and parameters of H217R are highly specific to the interaction of SQ with the nitrogen of arginine. These features can thus be considered as potential markers of the interaction of arginine with SQ in other proteins.


Asunto(s)
Benzoquinonas , Histidina , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Benzoquinonas/química , Quinonas/química , Citocromos , Nitrógeno/química
3.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37628960

RESUMEN

TGF-ß signaling promotes migration, invasion, and distant colonization of cancer cells in advanced metastatic cancers. TGF-ß signaling suppresses the anti-tumor immune response in a tumor microenvironment, allowing sustained tumor growth. TGF-ß plays an important role in normal physiology; thus it is no surprise that the clinical development of effective and safe TGF-ß inhibitors has been hampered due to their high toxicity. We discovered that increased expression of LY6K in cancer cells led to increased TGF-ß signaling and that inhibition of LY6K could lead to reduced TGF-ß signaling and reduced in vivo tumor growth. LY6K is a highly cancer-specific protein, and it is not expressed in normal organs except in the testes. Thus, LY6K is a valid target for developing therapeutic strategies to inhibit TGF-ß signaling in cancer cells. We employed in vitro pull-down assays and molecular dynamics simulations to understand the structural determinants of the TGF-ß receptor complex with LY6K. This combined approach allowed us to identify the critical residues and dynamics of the LY6K interaction with the TGF-ß receptor complex. These data are critical in designing novel drugs for the inhibition of TGF-ß in LY6K expressing cancer, induction of anti-tumor immune response, and inhibition of tumor growth and metastatic spread.


Asunto(s)
Colículos Inferiores , Neoplasias Primarias Secundarias , Humanos , Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta , Linfocitos , Microambiente Tumoral
4.
Cancer Lett ; 558: 216094, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36805500

RESUMEN

Lymphocyte antigen 6K (LY6K) is a small GPI-linked protein that is normally expressed in testes. Increased expression of LY6K is significantly associated with poor survival outcomes in many solid cancers, including cancers of the breast, ovary, gastrointestinal tract, head and neck, brain, bladder, and lung. LY6K is required for ERK-AKT and TGF-ß pathways in cancer cells and is required for in vivo tumor growth. In this report, we describe a novel role for LY6K in mitosis and cytokinesis through aurora B kinase and its substrate histone H3 signaling axis. Further, we describe the structural basis of the molecular interaction of small molecule NSC243928 with LY6K protein and the disruption of LY6K-aurora B signaling in cell cycle progression due to LY6K-NSC243928 interaction. Overall, disruption of LY6K function via NSC243928 led to failed cytokinesis, multinucleated cells, DNA damage, senescence, and apoptosis of cancer cells. LY6K is not required for vital organ function, thus inhibition of LY6K signaling is an ideal therapeutic approach for hard-to-treat cancers that lack targeted therapy such as triple-negative breast cancer.


Asunto(s)
Neoplasias , Femenino , Humanos , Antígenos Ly , Aurora Quinasa B , Aurora Quinasas , Ciclo Celular , División Celular , Línea Celular Tumoral , Proteínas Ligadas a GPI , Linfocitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA