Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 231(3): 1278-1295, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33629359

RESUMEN

Plant architecture strongly influences ecological performance, yet its role in plant evolution has not been explored in depth. By testing both phylogenetic and environmental signals, it is possible to separate architectural traits into four categories: development constraints (phylogenetic signal only); convergences (environmental dependency only); key confluences to the environmental driver (both); unknown (neither). We analysed the evolutionary history of the genus Euphorbia, a model clade with both high architectural diversity and a wide environmental range. We conducted comparative analyses of 193 Euphorbia species world-wide using 73 architectural traits, a dated phylogeny, and climate data. We identified 14 architectural types in Euphorbia based on trait combinations. We found 22 traits and three types representing convergences under climate groups, 21 traits and four types showing phylogenetic signal but no relation to climate, and 16 traits and five types with both climate and phylogenetic signals. Major drivers of architectural trait evolution likely include water stress in deserts (selected for succulence, continuous branching), frost disturbance in temperate systems (selected for simple, prostrate, short-lived shoots) and light competition (selected for arborescence). Simple architectures allowed resilience to disturbance, and frequent transitions into new forms. Complex architectures with functional specialisation developed under stable climates but have low evolvability.


Asunto(s)
Euphorbia , Fenotipo , Filogenia
2.
Am J Bot ; 108(7): 1087-1111, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34297852

RESUMEN

PREMISE: To further advance the understanding of the species-rich, economically and ecologically important angiosperm order Myrtales in the rosid clade, comprising nine families, approximately 400 genera and almost 14,000 species occurring on all continents (except Antarctica), we tested the Angiosperms353 probe kit. METHODS: We combined high-throughput sequencing and target enrichment with the Angiosperms353 probe kit to evaluate a sample of 485 species across 305 genera (76% of all genera in the order). RESULTS: Results provide the most comprehensive phylogenetic hypothesis for the order to date. Relationships at all ranks, such as the relationship of the early-diverging families, often reflect previous studies, but gene conflict is evident, and relationships previously found to be uncertain often remain so. Technical considerations for processing HTS data are also discussed. CONCLUSIONS: High-throughput sequencing and the Angiosperms353 probe kit are powerful tools for phylogenomic analysis, but better understanding of the genetic data available is required to identify genes and gene trees that account for likely incomplete lineage sorting and/or hybridization events.


Asunto(s)
Magnoliopsida , Myrtales , Núcleo Celular , Magnoliopsida/genética , Filogenia
3.
Nat Plants ; 10(4): 587-597, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38438539

RESUMEN

Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants.

4.
PLoS One ; 19(1): e0296362, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38206909

RESUMEN

The wild species of the Coffea genus present a very wide morphological, genetic, and biochemical diversity. Wild species are recognized more resistant to diseases, pests, and environmental variations than the two species currently cultivated worldwide: C. arabica (Arabica) and C. canephora (Robusta). Consequently, wild species are now considered as a crucial resource for adapting cultivated coffee trees to climate change. Within the Coffea genus, 79 wild species are native to the Indian Ocean islands of Comoros, Mayotte, Mauritius, Réunion and Madagascar, out of a total of 141 taxa worldwide. Among them, a group of 9 species called "Baracoffea" are particularly atypical in their morphology and adaptation to the sandy soils of the dry deciduous forests of western Madagascar. Here, we have attempted to shed light on the evolutionary history of three Baracoffea species: C. ambongensis, C. boinensis and C. bissetiae by analyzing their chloroplast and nuclear genomes. We assembled the complete chloroplast genomes de novo and extracted 28,800 SNP (Single Nucleotide Polymorphism) markers from the nuclear genomes. These data were used for phylogenetic analysis of Baracoffea with Coffea species from Madagascar and Africa. Our new data support the monophyletic origin of Baracoffea within the Coffea of Madagascar, but also reveal a divergence with a sister clade of four species: C. augagneurii, C. ratsimamangae, C. pervilleana and C. Mcphersonii (also called C. vohemarensis), belonging to the Subterminal botanical series and living in dry or humid forests of northern Madagascar. Based on a bioclimatic analysis, our work suggests that Baracoffea may have diverged from a group of Malagasy Coffea from northern Madagascar and adapted to the specific dry climate and low rainfall of western Madagascar. The genomic data generated in the course of this work will contribute to the understanding of the adaptation mechanisms of these particularly singular species.


Asunto(s)
Evolución Biológica , Coffea , Filogenia , Madagascar , Islas del Oceano Índico , Cloroplastos , Coffea/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA