Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 23(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35628241

RESUMEN

The decriminalization and legalization of cannabis has paved the way for investigations into the potential of the use of phytocannabinoids (pCBs) as natural therapeutics for the treatment of human diseases. This growing interest has recently focused on rare (less abundant) pCBs that are non-psychotropic compounds, such as cannabigerol (CBG), cannabichromene (CBC), Δ9-tetrahydrocannabivarin (THCV) and cannabigerolic acid (CBGA). Notably, pCBs can act via the endocannabinoid system (ECS), which is involved in the regulation of key pathophysiological processes, and also in the skin. In this study, we used human keratinocytes (HaCaT cells) as an in vitro model that expresses all major ECS elements in order to systematically investigate the effects of CBG, CBC, THCV and CBGA. To this end, we analyzed the gene and protein expression of ECS components (receptors: CB1, CB2, GPR55, TRPV1 and PPARα/γ/δ; enzymes: NAPE-PLD, FAAH, DAGLα/ß and MAGL) using qRT-PCR and Western blotting, along with assessments of their functionality using radioligand binding and activity assays. In addition, we quantified the content of endocannabinoid(-like) compounds (AEA, 2-AG, PEA, etc.) using UHPLC-MS/MS. Our results demonstrated that rare pCBs modulate the gene and protein expression of distinct ECS elements differently, as well as the content of endocannabinoid(-like) compounds. Notably, they all increased CB1/2 binding, TRPV1 channel stimulation and FAAH and MAGL catalytic activity. These unprecedented observations should be considered when exploring the therapeutic potential of cannabis extracts for the treatment of human skin diseases.


Asunto(s)
Cannabis , Alucinógenos , Humanos , Agonistas de Receptores de Cannabinoides , Cannabis/química , Endocannabinoides/metabolismo , Endocannabinoides/farmacología , Queratinocitos/metabolismo , Espectrometría de Masas en Tándem
2.
Neurobiol Dis ; 130: 104531, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31302243

RESUMEN

The dyshomeostasis of intracellular cholesterol trafficking is typical of the Niemann-Pick type C (NPC) disease, a fatal inherited lysosomal storage disorder presenting with progressive neurodegeneration and visceral organ involvement. In light of the well-established relevance of cholesterol in regulating the endocannabinoid (eCB) system expression and activity, this study was aimed at elucidating whether NPC disease-related cholesterol dyshomeostasis affects the functional status of the brain eCB system. To this end, we exploited a murine model of NPC deficiency for determining changes in the expression and activity of the major molecular components of the eCB signaling, including cannabinoid type-1 and type-2 (CB1 and CB2) receptors, their ligands, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), along with their main synthesizing/inactivating enzymes. We found a robust alteration of distinct components of the eCB system in various brain regions, including the cortex, hippocampus, striatum and cerebellum, of Npc1-deficient compared to wild-type pre-symptomatic mice. Changes of the eCB component expression and activity differ from one brain structure to another, although 2-AG and AEA are consistently found to decrease and increase in each structure, respectively. The thorough biochemical characterization of the eCB system was accompanied by a behavioral characterization of Npc1-deficient mice using a number of paradigms evaluating anxiety, locomotor activity, spatial learning/memory abilities, and coping response to stressful experience. Our findings provide the first description of an early and region-specific alteration of the brain eCB system in NPC and suggest that defective eCB signaling could contribute at producing and/or worsening the neurological symptoms of this disorder.


Asunto(s)
Encéfalo/metabolismo , Colesterol/metabolismo , Endocannabinoides/metabolismo , Homeostasis/fisiología , Enfermedad de Niemann-Pick Tipo C/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo
3.
Biochem J ; 457(3): 463-72, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24215562

RESUMEN

Lipid composition is expected to play an important role in modulating membrane enzyme activity, in particular if the substrates are themselves lipid molecules. A paradigmatic case is FAAH (fatty acid amide hydrolase), an enzyme critical in terminating endocannabinoid signalling and an important therapeutic target. In the present study, using a combined experimental and computational approach, we show that membrane lipids modulate the structure, subcellular localization and activity of FAAH. We report that the FAAH dimer is stabilized by the lipid bilayer and shows a higher membrane-binding affinity and enzymatic activity within membranes containing both cholesterol and the natural FAAH substrate AEA (anandamide). Additionally, co-localization of cholesterol, AEA and FAAH in mouse neuroblastoma cells suggests a mechanism through which cholesterol increases the substrate accessibility of FAAH.


Asunto(s)
Amidohidrolasas/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Activación Enzimática , Inhibidores Enzimáticos/metabolismo , Modelos Biológicos , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/química , Amidohidrolasas/genética , Animales , Línea Celular , Detergentes/química , Dimerización , Endocannabinoides/metabolismo , Hidrólisis , Hígado/metabolismo , Ratones , Neuronas/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Estabilidad Proteica , Transporte de Proteínas , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
4.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 8): 2101-10, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25084330

RESUMEN

Amine oxidases are a family of dimeric enzymes that contain one copper(II) ion and one 2,4,5-trihydroxyphenyalanine quinone per subunit. Here, the low-resolution structures of two Cu/TPQ amine oxidases from lentil (Lens esculenta) seedlings and from Euphorbia characias latex have been determined in solution by small-angle X-ray scattering. The active site of these enzymes is highly buried and requires a conformational change to allow substrate access. The study suggests that the funnel-shaped cavity located between the D3 and D4 domains is narrower within the crystal structure, whereas in solution the D3 domain could undergo movement resulting in a protein conformational change that is likely to lead to easier substrate access.


Asunto(s)
Amina Oxidasa (conteniendo Cobre)/metabolismo , Cobre/metabolismo , Amina Oxidasa (conteniendo Cobre)/química , Secuencia de Aminoácidos , Dominio Catalítico , Electroforesis en Gel de Poliacrilamida , Datos de Secuencia Molecular , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
5.
Biomolecules ; 14(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38927069

RESUMEN

The management of gastrointestinal disease in animals represents a significant challenge in veterinary and zootechnic practice. Traditionally, acute symptoms have been treated with antibiotics and high doses of zinc oxide (ZnO). However, concerns have been raised regarding the potential for microbial resistance and ecological detriment due to the excessive application of this compound. These concerns highlight the urgency of minimizing the use of ZnO and exploring sustainable nutritional solutions. Hydrolysable tannins (HTs), which are known for their role in traditional medicine for acute gastrointestinal issues, have emerged as a promising alternative. This study examined the combined effect of food-grade HTs and subtherapeutic ZnO concentration on relevant biological functions of Caco-2 cells, a widely used model of the intestinal epithelial barrier. We found that, when used together, ZnO and HTs (ZnO/HTs) enhanced tissue repair and improved epithelial barrier function, normalizing the expression and functional organization of tight junction proteins. Finally, the ZnO/HTs combination strengthened enterocytes' defense against oxidative stress induced by inflammation stimuli. In conclusion, combining ZnO and HTs may offer a suitable and practical approach for decreasing ZnO levels in veterinary nutritional applications.


Asunto(s)
Enterocitos , Taninos Hidrolizables , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Células CACO-2 , Enterocitos/efectos de los fármacos , Enterocitos/metabolismo , Humanos , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/química , Estrés Oxidativo/efectos de los fármacos , Proteínas de Uniones Estrechas/metabolismo
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159524, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38857757

RESUMEN

Neuroinflammation is a hallmark of several neurodegenerative disorders that has been extensively studied in recent years. Microglia, the primary immune cells of the central nervous system (CNS), are key players in this physiological process, demonstrating a remarkable adaptability in responding to various stimuli in the eye and the brain. Within the complex network of neuroinflammatory signals, the fatty acid N-ethanolamines, in particular N-arachidonylethanolamine (anandamide, AEA), emerged as crucial regulators of microglial activity under both physiological and pathological states. In this study, we interrogated for the first time the impact of the signaling of these bioactive lipids on microglial cell responses to a sub-lethal acute UVB radiation, a physical stressor responsible of microglia reactivity in either the retina or the brain. To this end, we developed an in vitro model using mouse microglial BV-2 cells. Upon 24 h of UVB exposure, BV-2 cells showed elevated oxidative stress markers and, cyclooxygenase (COX-2) expression, enhanced phagocytic and chemotactic activities, along with an altered immune profiling. Notably, UVB exposure led to a selective increase in expression and activity of fatty acid amide hydrolase (FAAH), the main enzyme responsible for degradation of fatty acid ethanolamides. Pharmacological FAAH inhibition via URB597 counteracted the effects of UVB exposure, decreasing tumor necrosis factor α (TNF-α) and nitric oxide (NO) release and reverting reactive oxidative species (ROS), interleukin-1ß (IL-1ß), and interleukin-10 (IL-10) levels to the control levels. Our findings support the potential of enhanced fatty acid amide signaling in mitigating UVB-induced cellular damage, paving the way to further exploration of these lipids in light-induced immune responses.

7.
Mol Reprod Dev ; 79(12): 853-60, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23071005

RESUMEN

Sperm-mediated gene transfer (SMGT), the ability of sperm cells to spontaneously incorporate exogenous DNA and to deliver it to oocytes during fertilization, has been proposed as an easy and efficient method for producing transgenic animals. SMGT is still undergoing development and optimization to improve the uptake efficiency of foreign DNA by sperm cells, which is a preliminary, yet critical, step for successful SMGT. Towards this aim, we developed a quantitative, real-time PCR-based assay to assess the absolute number of exogenous plasmids internalized into the spermatozoon. Using this technique, we found that the circular form of the DNA is more efficiently taken up than the linearized form. We also found that DNA internalization into the nucleus of porcine sperm cells is better under specific methyl-ß-cyclodextrin (MCD)-treated conditions, where the plasma membrane properties were altered without significantly compromising sperm physiology. These results provide the first evidence that membrane cholesterol depletion by MCD might represent a novel strategy for enhancing the ability of sperm to take up heterologous DNA.


Asunto(s)
Colesterol/metabolismo , ADN Circular/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , beta-Ciclodextrinas/farmacología , Animales , Transporte Biológico , ADN/metabolismo , Fertilización/genética , Técnicas de Transferencia de Gen , Masculino , Reacción en Cadena de la Polimerasa , Espermatozoides/citología , Espermatozoides/metabolismo , Sus scrofa
8.
Animals (Basel) ; 12(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35625150

RESUMEN

Brucella ceti, a zoonotic pathogen of major concern to cetacean health and conservation, is responsible for severe meningo-encephalitic/myelitic lesions in striped dolphins (Stenella coeruleoalba), often leading to their stranding and death. This study investigated, for the first time, the cellular prion protein (PrPc) expression in the brain tissue from B. ceti-infected, neurobrucellosis-affected striped dolphins. Seven B. ceti-infected, neurobrucellosis-affected striped dolphins, found stranded along the Italian coastline (6) and in the Canary Islands (1), were investigated, along with five B. ceti-uninfected striped dolphins from the coast of Italy, carrying no brain lesions, which served as negative controls. Western Blot (WB) and immunohistochemistry (IHC) with an anti-PrP murine monoclonal antibody were carried out on the brain parenchyma of these dolphins. While PrPc IHC yielded inconclusive results, a clear-cut PrPc expression of different intensity was found by means of WB analyses in the brain tissue of all the seven herein investigated, B. ceti-infected and neurobrucellosis-affected cetacean specimens, with two dolphins stranded along the Italian coastline and one dolphin beached in Canary Islands also exhibiting a statistically significant increase in cerebral PrPc expression as compared to the five Brucella spp.-negative control specimens. The significantly increased PrPc expression found in three out of seven B. ceti-infected, neurobrucellosis-affected striped dolphins does not allow us to draw any firm conclusion(s) about the putative role of PrPc as a host cell receptor for B. ceti. Should this be the case, an upregulation of PrPc mRNA in the brain tissue of neurobrucellosis-affected striped dolphins could be hypothesized during the different stages of B. ceti infection, as previously shown in murine bone marrow cells challenged with Escherichia coli. Noteworthy, the inflammatory infiltrates seen in the brain and in the cervico-thoracic spinal cord segments from the herein investigated, B. ceti-infected and neurobrucellosis-affected striped dolphins were densely populated by macrophage/histiocyte cells, often harboring Brucella spp. antigen in their cytoplasm, similarly to what was reported in macrophages from mice experimentally challenged with B. abortus. Notwithstanding the above, much more work is needed in order to properly assess the role of PrPc, if any, as a host cell receptor for B. ceti in striped dolphins.

9.
Front Immunol ; 10: 1347, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316498

RESUMEN

5-lipoxygenase (5-LOX) is a non-heme iron-containing dioxygenase expressed in immune cells that catalyzes the two initial steps in the biosynthesis of leukotrienes. It is well known that 5-LOX activation in innate immunity cells is related to different iron-associated pro-inflammatory disorders, including cancer, neurodegenerative diseases, and atherosclerosis. However, the molecular and cellular mechanism(s) underlying the interplay between iron and 5-LOX activation are largely unexplored. In this study, we investigated whether iron (in the form of Fe3+ and hemin) might modulate 5-LOX influencing its membrane binding, subcellular distribution, and functional activity. We proved by fluorescence resonance energy transfer approach that metal removal from the recombinant human 5-LOX, not only altered the catalytic activity of the enzyme, but also impaired its membrane-binding. To ascertain whether iron can modulate the subcellular distribution of 5-LOX in immune cells, we exposed THP-1 macrophages and human primary macrophages to exogenous iron. Cells exposed to increasing amounts of Fe3+ showed a redistribution (ranging from ~45 to 75%) of the cytosolic 5-LOX to the nuclear fraction. Accordingly, confocal microscopy revealed that acute exposure to extracellular Fe3+, as well as hemin, caused an overt increase in the nuclear fluorescence of 5-LOX, accompanied by a co-localization with the 5-LOX activating protein (FLAP) both in THP-1 macrophages and human macrophages. The functional relevance of iron overloading was demonstrated by a marked induction of the expression of interleukin-6 in iron-treated macrophages. Importantly, pre-treatment of cells with the iron-chelating agent deferoxamine completely abolished the hemin-dependent translocation of 5-LOX to the nuclear fraction, and significantly reverted its effect on interleukin-6 overexpression. These results suggest that exogenous iron modulates the biological activity of 5-LOX in macrophages by increasing its ability to bind to nuclear membranes, further supporting a role for iron in inflammation-based diseases where its homeostasis is altered and suggesting further evidence of risks related to iron overload.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Hierro/farmacología , Macrófagos/efectos de los fármacos , Araquidonato 5-Lipooxigenasa/genética , Células Cultivadas , Hemina/farmacología , Humanos , Activación de Macrófagos , Macrófagos/enzimología
10.
J Mol Biol ; 349(1): 143-52, 2005 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-15876374

RESUMEN

Soybean lipoxygenase-1 (LOX-1) is used widely as a model for studying the structural and functional properties of the homologous family of lipoxygenases. The crystallographic structure revealed that LOX-1 is organized in a beta-sheet N-terminal domain and a larger, mostly helical, C-terminal domain. Here, we describe the overall structural characterization of native unliganded LOX-1 in solution, using small angle X-ray scattering (SAXS). We show that the scattering pattern of the unliganded enzyme in solution does not display any significant difference compared with that calculated from the crystal structure, and that models of the overall shape of the protein calculated ab initio from the SAXS pattern provide a close envelope to the crystal structure. These data, demonstrating that LOX-1 has a compact structure also in solution, rule out any major motional flexibility of the LOX-1 molecule in aqueous solutions. In addition we show that eicosatetraynoic acid, an irreversible inhibitor of lipoxygenase used to mimic the effect of substrate binding, does not alter the overall conformation of LOX-1 nor its ability to bind to membranes. In contrast, the addition of glycerol (to 5%, v/v) causes an increase in the binding of the enzyme to membranes without altering its catalytic efficiency towards linoleic acid nor its SAXS pattern, suggesting that the global conformation of the enzyme is unaffected. Therefore, the compact structure determined in the crystal appears to be essentially preserved in these various solution conditions. During the preparation of this article, a paper by M. Hammel and co-workers showed instead a sharp difference between crystal and solution conformations of rabbit 15-LOX-1. The possible cause of this difference might be the presence of oligomers in the rabbit lipoxygenase preparations.


Asunto(s)
Estabilidad de Enzimas/fisiología , Glycine max/enzimología , Lipooxigenasa/química , Ácido 5,8,11,14-Eicosatetrainoico/metabolismo , Simulación por Computador , Glicerol/metabolismo , Lipooxigenasa/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Difracción de Rayos X
11.
Clin Biochem ; 42(15): 1512-6, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19615988

RESUMEN

OBJECTIVES: To set-up a method for a direct evaluation in human serum of paraoxonase enzymatic activities, establishing a possible correlation with Q192R genotype polymorphism. DESIGN AND METHODS: 101 different human serum samples were genotyped for paraoxonase Q192R polymorphism by PCR restriction analysis, and evaluated spectrophotometrically with regard to paraoxon and 2-coumaranone hydrolytic activities. Both activities of paraoxonase were assayed, quantified through normalization by arylesterase activity, and compared with the data concerning Q/R genetic polymorphism. RESULTS: The mean normalized paraoxonase activity was found to be significantly higher in RR than in QQ human sera (3.99+/-0.6 versus 1.32+/-0.44; P<0.0001); instead, the 2-coumaranone hydrolysis showed an opposite trend (0.10+/-0.02 versus 0.23+/-0.04, in RR and QQ sera respectively; P<0.0001). CONCLUSIONS: These methods were successfully applied to the whole serum, suggesting a possible use of this approach for a clinically relevant phenotypic characterization.


Asunto(s)
Arildialquilfosfatasa/metabolismo , Benzofuranos/metabolismo , Inhibidores de la Colinesterasa/metabolismo , Paraoxon/metabolismo , Polimorfismo Genético , Adulto , Genotipo , Humanos , Persona de Mediana Edad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA