RESUMEN
The electron polaron, a spin-1/2 excitation, is the fundamental negative charge carrier in π-conjugated organic materials. Large polaron spatial dimensions result from weak electron-lattice coupling and thus identify materials with unusually low barriers for the charge transfer reactions that are central to electronic device applications. Here we demonstrate electron polarons in π-conjugated multiporphyrin arrays that feature vast areal delocalization. This finding is evidenced by concurrent optical and electron spin resonance measurements, coupled with electronic structure calculations that suggest atypically small reorganization energies for one-electron reduction of these materials. Because the electron polaron dimension can be linked to key performance metrics in organic photovoltaics, light-emitting diodes, and a host of other devices, these findings identify conjugated materials with exceptional optical, electronic, and spintronic properties.
RESUMEN
The influence of electronic symmetry on triplet state delocalization in linear zinc porphyrin oligomers is explored by electron paramagnetic resonance techniques. Using a combination of transient continuous wave and pulse electron nuclear double resonance spectroscopies, it is demonstrated experimentally that complete triplet state delocalization requires the chemical equivalence of all porphyrin units. These results are supported by density functional theory calculations, showing uneven delocalization in a porphyrin dimer in which a terminal ethynyl group renders the two porphyrin units inequivalent. When the conjugation length of the molecule is further increased upon addition of a second terminal ethynyl group that restores the symmetry of the system, the triplet state is again found to be completely delocalized. The observations suggest that electronic symmetry is of greater importance for triplet state delocalization than other frequently invoked factors such as conformational rigidity or fundamental length-scale limitations.
RESUMEN
Electron spin resonance (ESR) spectroscopic line shape analysis and continuous-wave (CW) progressive microwave power saturation experiments are used to probe the relaxation behavior and the relaxation times of charged excitations (hole and electron polarons) in meso-to-meso ethyne-bridged (porphinato)zinc(II) oligomers (PZnn compounds), which can serve as models for the relevant states generated upon spin injection. The observed ESR line shapes for the PZnn hole polaron ([PZnn](+â¢)) and electron polaron ([PZnn](-â¢)) states evolve from Gaussian to more Lorentzian as the oligomer length increases from 1.9 to 7.5 nm, with solution-phase [PZnn](+â¢) and [PZnn](-â¢) spin-spin (T2) and spin-lattice (T1) relaxation times at 298 K ranging, respectively, from 40 to 230 ns and 0.2 to 2.3 µs. Notably, these very long relaxation times are preserved in thick films of these species. Because the magnitudes of spin-spin and spin-lattice relaxation times are vital metrics for spin dephasing in quantum computing or for spin-polarized transport in magnetoresistive structures, these results, coupled with the established wire-like transport behavior across metal-dithiol-PZnn-metal junctions, present meso-to-meso ethyne-bridged multiporphyrin systems as leading candidates for ambient-temperature organic spintronic applications.
RESUMEN
Ethyne elaboration of a (porphinato)Zn(II) (PZn) chromophoric core renders fine control over the zero-field splitting (ZFS) parameters of the lowest energy photoexcited triplet state (T1), resulting in the ability to manipulate the spin distribution and establish highly symmetrical coincident optical and magnetic principal axes.
RESUMEN
We report variable temperature X-band EPR spectroscopic data for the cation radical states of meso-to-meso ethyne-bridged (porphinato)zinc(II) (PZnn) oligomers. These [PZn2-PZn7]+ species span an average 18-75 A length scale and display peak-to-peak EPR line widths (DeltaBp-p) that diminish with conjugation length. Analysis of these EPR data show that PZnn+ structures possess the largest hole polaron delocalization lengths yet measured; experiments carried out over a 4-298 K temperature domain demonstrate remarkably that the charge delocalization length remains invariant with temperature. These cation radical EPR data are well described by a stochastic, near barrierless, one-dimensional charge hopping model developed by Norris for N equivalent sites on a polymer chain, where the theoretical EPR line width is given by DeltaBp-p(N-mer) = (1/N1/2)DeltaBp-p(monomer); PZnn+ oligomers are the first such systems to verify a Norris-type hole delocalization mechanism over a substantial ( approximately 75 A) length scale. Given the time scale of the EPR measurement, these data show that either (i) Franck-Condon effects are incapable of driving charge localization in [PZn2-PZn7]+, resulting in cation radical wave functions which are globally delocalized over a spatial domain that is large with respect to established benchmarks for hole-doped conjugated materials, or (ii) polaron hopping rates in these oligomers exceed 107 s-1, even at 4 K. Finally, this study demonstrates that polymeric building blocks having low magnitude inner sphere reorganization energies enable the development of electronic materials having long polaron delocalization lengths.