Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 18(1): 332, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28449639

RESUMEN

BACKGROUND: The benefit of increasing genomic sequence data to the scientific community depends on easy-to-use, scalable bioinformatics support. CloVR-Comparative combines commonly used bioinformatics tools into an intuitive, automated, and cloud-enabled analysis pipeline for comparative microbial genomics. RESULTS: CloVR-Comparative runs on annotated complete or draft genome sequences that are uploaded by the user or selected via a taxonomic tree-based user interface and downloaded from NCBI. CloVR-Comparative runs reference-free multiple whole-genome alignments to determine unique, shared and core coding sequences (CDSs) and single nucleotide polymorphisms (SNPs). Output includes short summary reports and detailed text-based results files, graphical visualizations (phylogenetic trees, circular figures), and a database file linked to the Sybil comparative genome browser. Data up- and download, pipeline configuration and monitoring, and access to Sybil are managed through CloVR-Comparative web interface. CloVR-Comparative and Sybil are distributed as part of the CloVR virtual appliance, which runs on local computers or the Amazon EC2 cloud. Representative datasets (e.g. 40 draft and complete Escherichia coli genomes) are processed in <36 h on a local desktop or at a cost of <$20 on EC2. CONCLUSIONS: CloVR-Comparative allows anybody with Internet access to run comparative genomics projects, while eliminating the need for on-site computational resources and expertise.


Asunto(s)
Nube Computacional , Genómica/métodos , Programas Informáticos , Automatización , Genoma Microbiano/genética , Alineación de Secuencia , Análisis de Secuencia
2.
Nature ; 455(7214): 757-63, 2008 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-18843361

RESUMEN

The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.


Asunto(s)
Genoma de Protozoos/genética , Genómica , Malaria Vivax/parasitología , Plasmodium vivax/genética , Secuencias de Aminoácidos , Animales , Artemisininas/metabolismo , Artemisininas/farmacología , Atovacuona/metabolismo , Atovacuona/farmacología , Núcleo Celular/genética , Cromosomas/genética , Secuencia Conservada/genética , Eritrocitos/parasitología , Evolución Molecular , Haplorrinos/parasitología , Humanos , Isocoras/genética , Ligandos , Malaria Vivax/metabolismo , Familia de Multigenes , Plasmodium vivax/efectos de los fármacos , Plasmodium vivax/patogenicidad , Plasmodium vivax/fisiología , Análisis de Secuencia de ADN , Especificidad de la Especie , Sintenía/genética
3.
Proc Natl Acad Sci U S A ; 108(11): 4494-9, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21368196

RESUMEN

Molecular data on a limited number of chromosomal loci have shown that the population of Neisseria meningitidis (Nm), a deadly human pathogen, is structured in distinct lineages. Given that the Nm population undergoes substantial recombination, the mechanisms resulting in the evolution of these lineages, their persistence in time, and the implications for the pathogenicity of the bacterium are not yet completely understood. Based on whole-genome sequencing, we show that Nm is structured in phylogenetic clades. Through acquisition of specific genes and through insertions and rearrangements, each clade has acquired and remodeled specific genomic tracts, with the potential to impact on the commensal and virulence behavior of Nm. Despite this clear evidence of a structured population, we confirm high rates of detectable recombination throughout the whole Nm chromosome. However, gene conversion events were found to be longer within clades than between clades, suggesting a DNA cleavage mechanism associated with the phylogeny of the species. We identify 22 restriction modification systems, probably acquired by horizontal gene transfer from outside of the species/genus, whose distribution in the different strains coincides with the phylogenetic clade structure. We provide evidence that these clade-associated restriction modification systems generate a differential barrier to DNA exchange consistent with the observed population structure. These findings have general implications for the emergence of lineage structure and virulence in recombining bacterial populations, and they could provide an evolutionary framework for the population biology of a number of other bacterial species that show contradictory population structure and dynamics.


Asunto(s)
Enzimas de Restricción-Modificación del ADN/genética , Neisseria meningitidis/clasificación , Neisseria meningitidis/genética , Filogenia , Recombinación Genética , Secuencia de Bases , Inversión Cromosómica/genética , Segregación Cromosómica/genética , Secuencia Conservada/genética , ADN Bacteriano/genética , Conversión Génica/genética , Genes Bacterianos/genética , Interacciones Huésped-Patógeno/genética , Humanos , Mutagénesis Insercional/genética , Neisseria meningitidis/crecimiento & desarrollo , Neisseria meningitidis/patogenicidad , Operón/genética , Especificidad de la Especie
4.
Bioinformatics ; 28(2): 160-6, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22121156

RESUMEN

MOTIVATION: Analysis of multiple genomes requires sophisticated tools that provide search, visualization, interactivity and data export. Comparative genomics datasets tend to be large and complex, making development of these tools difficult. In addition to scalability, comparative genomics tools must also provide user-friendly interfaces such that the research scientist can explore complex data with minimal technical expertise. RESULTS: We describe a new version of the Sybil software package and its application to the important human pathogen Streptococcus pneumoniae. This new software provides a feature-rich set of comparative genomics tools for inspection of multiple genome structures, mining of orthologous gene families and identification of potential vaccine candidates. AVAILABILITY: The S.pneumoniae resource is online at http://strepneumo-sybil.igs.umaryland.edu. The software, database and website are available for download as a portable virtual machine and from http://sourceforge.net/projects/sybil.


Asunto(s)
Bases de Datos Factuales , Programas Informáticos , Streptococcus pneumoniae/genética , Genoma , Genómica , Humanos , Internet , Infecciones Neumocócicas/inmunología
5.
Clin Cancer Res ; 29(5): 899-909, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36534496

RESUMEN

PURPOSE: Circulating tumor DNA (ctDNA) has the potential to guide therapy selection and monitor treatment response in patients with metastatic cancer. However, germline and clonal hematopoiesis-associated alterations can confound identification of tumor-specific mutations in cell-free DNA (cfDNA), often requiring additional sequencing of tumor tissue. The current study assessed whether ctDNA-based treatment response monitoring could be performed in a tumor tissue-independent manner by combining ultra-deep targeted sequencing analyses of cfDNA with patient-matched white blood cell (WBC)-derived DNA. EXPERIMENTAL DESIGN: In total, 183 cfDNA and 49 WBC samples, along with 28 tissue samples, from 52 patients with metastatic colorectal cancer participating in the prospective phase III CAIRO5 clinical trial were analyzed using an ultra-deep targeted sequencing liquid biopsy assay. RESULTS: The combined cfDNA and WBC analysis prevented false-positives due to germline or hematopoietic variants in 40% of patients. Patient-matched tumor tissue sequencing did not provide additional information. Longitudinal analyses of ctDNA were more predictive of overall survival than standard-of-care radiological response evaluation. ctDNA mutations related to primary or acquired resistance to panitumumab were identified in 42% of patients. CONCLUSIONS: Accurate calling of ctDNA mutations for treatment response monitoring is feasible in a tumor tissue-independent manner by combined cfDNA and patient-matched WBC genomic DNA analysis. This tissue biopsy-independent approach simplifies sample logistics and facilitates the application of liquid biopsy ctDNA testing for evaluation of emerging therapy resistance, opening new avenues for early adaptation of treatment regimens.


Asunto(s)
Ácidos Nucleicos Libres de Células , ADN Tumoral Circulante , Neoplasias del Colon , Neoplasias del Recto , Humanos , Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/genética , ADN Tumoral Circulante/genética , ADN de Neoplasias/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Estudios Prospectivos
6.
Bioinformatics ; 27(3): 334-42, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21148543

RESUMEN

MOTIVATION: The relative ease and low cost of current generation sequencing technologies has led to a dramatic increase in the number of sequenced genomes for species across the tree of life. This increasing volume of data requires tools that can quickly compare multiple whole-genome sequences, millions of base pairs in length, to aid in the study of populations, pan-genomes, and genome evolution. RESULTS: We present a new multiple alignment tool for whole genomes named Mugsy. Mugsy is computationally efficient and can align 31 Streptococcus pneumoniae genomes in less than 2 hours producing alignments that compare favorably to other tools. Mugsy is also the fastest program evaluated for the multiple alignment of assembled human chromosome sequences from four individuals. Mugsy does not require a reference sequence, can align mixtures of assembled draft and completed genome data, and is robust in identifying a rich complement of genetic variation including duplications, rearrangements, and large-scale gain and loss of sequence. AVAILABILITY: Mugsy is free, open-source software available from http://mugsy.sf.net.


Asunto(s)
Algoritmos , Genómica/métodos , Alineación de Secuencia/métodos , Genoma Bacteriano/genética , Humanos , Programas Informáticos , Streptococcus pneumoniae/genética
7.
Nat Commun ; 13(1): 2830, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595835

RESUMEN

The lack of validated, distributed comprehensive genomic profiling assays for patients with cancer inhibits access to precision oncology treatment. To address this, we describe elio tissue complete, which has been FDA-cleared for examination of 505 cancer-related genes. Independent analyses of clinically and biologically relevant sequence changes across 170 clinical tumor samples using MSK-IMPACT, FoundationOne, and PCR-based methods reveals a positive percent agreement of >97%. We observe high concordance with whole-exome sequencing for evaluation of tumor mutational burden for 307 solid tumors (Pearson r = 0.95) and comparison of the elio tissue complete microsatellite instability detection approach with an independent PCR assay for 223 samples displays a positive percent agreement of 99%. Finally, evaluation of amplifications and translocations against DNA- and RNA-based approaches exhibits >98% negative percent agreement and positive percent agreement of 86% and 82%, respectively. These methods provide an approach for pan-solid tumor comprehensive genomic profiling with high analytical performance.


Asunto(s)
Neoplasias , Biomarcadores de Tumor/genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación , Neoplasias/patología , Medicina de Precisión
8.
J Bacteriol ; 193(19): 5450-64, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21784931

RESUMEN

Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity.


Asunto(s)
Genoma Bacteriano/genética , Xanthomonas/genética , Arabidopsis/microbiología , Datos de Secuencia Molecular , Oryza/microbiología , Xanthomonas/fisiología
9.
BMC Bioinformatics ; 12: 272, 2011 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-21718539

RESUMEN

BACKGROUND: Rapid annotation and comparisons of genomes from multiple isolates (pan-genomes) is becoming commonplace due to advances in sequencing technology. Genome annotations can contain inconsistencies and errors that hinder comparative analysis even within a single species. Tools are needed to compare and improve annotation quality across sets of closely related genomes. RESULTS: We introduce a new tool, Mugsy-Annotator, that identifies orthologs and evaluates annotation quality in prokaryotic genomes using whole genome multiple alignment. Mugsy-Annotator identifies anomalies in annotated gene structures, including inconsistently located translation initiation sites and disrupted genes due to draft genome sequencing or pseudogenes. An evaluation of species pan-genomes using the tool indicates that such anomalies are common, especially at translation initiation sites. Mugsy-Annotator reports alternate annotations that improve consistency and are candidates for further review. CONCLUSIONS: Whole genome multiple alignment can be used to efficiently identify orthologs and annotation problem areas in a bacterial pan-genome. Comparisons of annotated gene structures within a species may show more variation than is actually present in the genome, indicating errors in genome annotation. Our new tool Mugsy-Annotator assists re-annotation efforts by highlighting edits that improve annotation consistency.


Asunto(s)
Bacterias/genética , Genoma Bacteriano , Anotación de Secuencia Molecular , Alineación de Secuencia/métodos , Mapeo Cromosómico
10.
BMC Bioinformatics ; 12: 356, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21878105

RESUMEN

BACKGROUND: Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. RESULTS: We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. CONCLUSION: The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.


Asunto(s)
Computadores , Internet , Análisis de Secuencia de ADN , Programas Informáticos , Biología Computacional , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento
11.
Infect Immun ; 79(2): 950-60, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21078854

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal illness in children less than 5 years of age in low- and middle-income nations, whereas it is an emerging enteric pathogen in industrialized nations. Despite being an important cause of diarrhea, little is known about the genomic composition of ETEC. To address this, we sequenced the genomes of five ETEC isolates obtained from children in Guinea-Bissau with diarrhea. These five isolates represent distinct and globally dominant ETEC clonal groups. Comparative genomic analyses utilizing a gene-independent whole-genome alignment method demonstrated that sequenced ETEC strains share approximately 2.7 million bases of genomic sequence. Phylogenetic analysis of this "core genome" confirmed the diverse history of the ETEC pathovar and provides a finer resolution of the E. coli relationships than multilocus sequence typing. No identified genomic regions were conserved exclusively in all ETEC genomes; however, we identified more genomic content conserved among ETEC genomes than among non-ETEC E. coli genomes, suggesting that ETEC isolates share a genomic core. Comparisons of known virulence and of surface-exposed and colonization factor genes across all sequenced ETEC genomes not only identified variability but also indicated that some antigens are restricted to the ETEC pathovar. Overall, the generation of these five genome sequences, in addition to the two previously generated ETEC genomes, highlights the genomic diversity of ETEC. These studies increase our understanding of ETEC evolution, as well as provide insight into virulence factors and conserved proteins, which may be targets for vaccine development.


Asunto(s)
Escherichia coli Enterotoxigénica/clasificación , Escherichia coli Enterotoxigénica/genética , Genoma Bacteriano , Genómica/métodos , Secuencia de Aminoácidos , Niño , Secuencia Conservada , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Variación Genética , Guinea Bissau/epidemiología , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Filogenia
12.
Bioinformatics ; 26(12): 1488-92, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20413634

RESUMEN

MOTIVATION: The growth of sequence data has been accompanied by an increasing need to analyze data on distributed computer clusters. The use of these systems for routine analysis requires scalable and robust software for data management of large datasets. Software is also needed to simplify data management and make large-scale bioinformatics analysis accessible and reproducible to a wide class of target users. RESULTS: We have developed a workflow management system named Ergatis that enables users to build, execute and monitor pipelines for computational analysis of genomics data. Ergatis contains preconfigured components and template pipelines for a number of common bioinformatics tasks such as prokaryotic genome annotation and genome comparisons. Outputs from many of these components can be loaded into a Chado relational database. Ergatis was designed to be accessible to a broad class of users and provides a user friendly, web-based interface. Ergatis supports high-throughput batch processing on distributed compute clusters and has been used for data management in a number of genome annotation and comparative genomics projects. AVAILABILITY: Ergatis is an open-source project and is freely available at http://ergatis.sourceforge.net.


Asunto(s)
Biología Computacional/métodos , Internet , Programas Informáticos , Bases de Datos Genéticas , Bases de Datos de Proteínas , Flujo de Trabajo
13.
J Mol Diagn ; 23(10): 1324-1333, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34314880

RESUMEN

Genomic tumor profiling by next-generation sequencing (NGS) allows for large-scale tumor testing to inform targeted cancer therapies and immunotherapies, and to identify patients for clinical trials. These tests are often underutilized in patients with late-stage solid tumors and are typically performed in centralized specialty laboratories, thereby limiting access to these complex tests. Personal Genome Diagnostics Inc., elio tissue complete NGS solution is a comprehensive DNA-to-report kitted assay and bioinformatics solution. Comparison of 147 unique specimens from >20 tumor types was performed using the elio tissue complete solution and Foundation Medicine's FoundationOne test, which is of similar size and gene content. The analytical performance of all genomic variant types was evaluated. In general, the overall mutational profile is highly concordant between the two assays, with agreement in sequence variants reported between panels demonstrating >95% positive percentage agreement for single-nucleotide variants and insertions/deletions in clinically actionable genes. Both copy number alterations and gene translocations showed 80% to 83% positive percentage agreement, whereas tumor mutation burden and microsatellite status showed a high level of concordance across a range of mutation loads and tumor types. The Personal Genome Diagnostics Inc., elio tissue complete assay is comparable to the FoundationOne test and will allow more laboratories to offer a diagnostic NGS assay in house, which will ultimately reduce time to result and increase the number of patients receiving molecular genomic profiling and personalized treatment.


Asunto(s)
Pruebas Genéticas/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Laboratorios , Neoplasias/genética , Análisis de Secuencia de ADN/métodos , Biomarcadores de Tumor/genética , Variaciones en el Número de Copia de ADN , Humanos , Mutación INDEL , Inestabilidad de Microsatélites , Polimorfismo de Nucleótido Simple
14.
PLoS Genet ; 2(2): e21, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16482227

RESUMEN

Anaplasma (formerly Ehrlichia) phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia) sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens.


Asunto(s)
Ehrlichia/genética , Ehrlichiosis/genética , Genómica/métodos , Animales , Biotina/metabolismo , Reparación del ADN , Ehrlichiosis/microbiología , Genoma , Humanos , Modelos Biológicos , Filogenia , Rickettsia/genética , Garrapatas
15.
OMICS ; 12(2): 137-41, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18416670

RESUMEN

The methodologies used to generate genome and metagenome annotations are diverse and vary between groups and laboratories. Descriptions of the annotation process are helpful in interpreting genome annotation data. Some groups have produced Standard Operating Procedures (SOPs) that describe the annotation process, but standards are lacking for structure and content of these descriptions. In addition, there is no central repository to store and disseminate procedures and protocols for genome annotation. We highlight the importance of SOPs for genome annotation and endorse an online repository of SOPs.


Asunto(s)
Bases de Datos Genéticas/normas , Genómica , Sistemas en Línea/normas , Internet
16.
Sci Transl Med ; 10(457)2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185652

RESUMEN

Variability in the accuracy of somatic mutation detection may affect the discovery of alterations and the therapeutic management of cancer patients. To address this issue, we developed a somatic mutation discovery approach based on machine learning that outperformed existing methods in identifying experimentally validated tumor alterations (sensitivity of 97% versus 90 to 99%; positive predictive value of 98% versus 34 to 92%). Analysis of paired tumor-normal exome data from 1368 TCGA (The Cancer Genome Atlas) samples using this method revealed concordance for 74% of mutation calls but also identified likely false-positive and false-negative changes in TCGA data, including in clinically actionable genes. Determination of high-quality somatic mutation calls improved tumor mutation load-based predictions of clinical outcome for melanoma and lung cancer patients previously treated with immune checkpoint inhibitors. Integration of high-quality machine learning mutation detection in clinical next-generation sequencing (NGS) analyses increased the accuracy of test results compared to other clinical sequencing analyses. These analyses provide an approach for improved identification of tumor-specific mutations and have important implications for research and clinical management of cancer patients.


Asunto(s)
Aprendizaje Automático , Mutación/genética , Exoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoterapia , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Programas Informáticos , Secuenciación del Exoma
17.
Methods Mol Biol ; 408: 93-108, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18314579

RESUMEN

With the successful completion of genome sequencing projects for a variety of model organisms, the selection of candidate organisms for future sequencing efforts has been guided increasingly by a desire to enable comparative genomics. This trend has both depended on and encouraged the development of software tools that can elucidate and capitalize on the similarities and differences between genomes. "Sybil," one such tool, is a primarily web-based software package whose primary goal is to facilitate the analysis and visualization of comparative genome data, with a particular emphasis on protein and gene cluster data. Herein, a two-phase protein clustering algorithm, used to generate protein clusters suitable for analysis through Sybil and a method for creating graphical displays of protein or gene clusters that span multiple genomes are described. When combined, these two relatively simple techniques provide the user of the Sybil software (The Institute for Genomic Research [TIGR] Bioinformatics Department) with a browsable graphical display of his or her "input" genomes, showing which genes are conserved based on the parameters supplied to the protein clustering algorithm. For any given protein cluster the graphical display consists of a local alignment of the genomes in which the clustered genes are located. The genomes are arranged in a vertical stack, as in a multiple alignment, and shaded areas are used to connect genes in the same cluster, thus displaying conservation at the protein level in the context of the underlying genomic sequences. The authors have found this display-and slight variants thereof-useful for a variety of annotation and comparison tasks, ranging from identifying "missed" gene models or single-exon discrepancies between orthologous genes, to finding large or small regions of conserved gene synteny, and investigating the properties of the breakpoints between such regions.


Asunto(s)
Genómica/estadística & datos numéricos , Programas Informáticos , Algoritmos , Análisis por Conglomerados , Bases de Datos Genéticas , Proteínas/clasificación , Proteínas/genética , Alineación de Secuencia/estadística & datos numéricos
18.
Nucleic Acids Res ; 32(3): 977-88, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14960714

RESUMEN

We sequenced the complete genome of Bacillus cereus ATCC 10987, a non-lethal dairy isolate in the same genetic subgroup as Bacillus anthracis. Comparison of the chromosomes demonstrated that B.cereus ATCC 10987 was more similar to B.anthracis Ames than B.cereus ATCC 14579, while containing a number of unique metabolic capabilities such as urease and xylose utilization and lacking the ability to utilize nitrate and nitrite. Additionally, genetic mechanisms for variation of capsule carbohydrate and flagella surface structures were identified. Bacillus cereus ATCC 10987 contains a single large plasmid (pBc10987), of approximately 208 kb, that is similar in gene content and organization to B.anthracis pXO1 but is lacking the pathogenicity-associated island containing the anthrax lethal and edema toxin complex genes. The chromosomal similarity of B.cereus ATCC 10987 to B.anthracis Ames, as well as the fact that it contains a large pXO1-like plasmid, may make it a possible model for studying B.anthracis plasmid biology and regulatory cross-talk.


Asunto(s)
Bacillus anthracis/clasificación , Bacillus cereus/clasificación , Plásmidos/clasificación , Adaptación Fisiológica , Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/genética , Bacillus anthracis/genética , Bacillus cereus/genética , Bacillus cereus/metabolismo , Cápsulas Bacterianas/inmunología , Secuencia de Bases , Cromosomas Bacterianos , Secuencia Conservada , Flagelos/inmunología , Genoma Bacteriano , Filogenia , Plásmidos/química , Plásmidos/genética , Recombinación Genética , Regulón
19.
Nucleic Acids Res ; 32(8): 2386-95, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15115801

RESUMEN

The genomes of three strains of Listeria monocytogenes that have been associated with food-borne illness in the USA were subjected to whole genome comparative analysis. A total of 51, 97 and 69 strain-specific genes were identified in L.monocytogenes strains F2365 (serotype 4b, cheese isolate), F6854 (serotype 1/2a, frankfurter isolate) and H7858 (serotype 4b, meat isolate), respectively. Eighty-three genes were restricted to serotype 1/2a and 51 to serotype 4b strains. These strain- and serotype-specific genes probably contribute to observed differences in pathogenicity, and the ability of the organisms to survive and grow in their respective environmental niches. The serotype 1/2a-specific genes include an operon that encodes the rhamnose biosynthetic pathway that is associated with teichoic acid biosynthesis, as well as operons for five glycosyl transferases and an adenine-specific DNA methyltransferase. A total of 8603 and 105 050 high quality single nucleotide polymorphisms (SNPs) were found on the draft genome sequences of strain H7858 and strain F6854, respectively, when compared with strain F2365. Whole genome comparative analyses revealed that the L.monocytogenes genomes are essentially syntenic, with the majority of genomic differences consisting of phage insertions, transposable elements and SNPs.


Asunto(s)
Microbiología de Alimentos , Genoma Bacteriano , Genómica , Listeria monocytogenes/clasificación , Listeria monocytogenes/genética , Composición de Base , Cromosomas Bacterianos/genética , Elementos Transponibles de ADN/genética , Genes Bacterianos/genética , Listeria monocytogenes/metabolismo , Carne/microbiología , Sistemas de Lectura Abierta/genética , Mapeo Físico de Cromosoma , Polimorfismo de Nucleótido Simple/genética , Profagos/genética , Serotipificación , Especificidad de la Especie , Sintenía , Virulencia/genética
20.
Cancer Prev Res (Phila) ; 8(4): 277-286, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25406187

RESUMEN

Disruption of NOTCH1 signaling was recently discovered in head and neck cancer. This study aims to evaluate NOTCH1 alterations in the progression of oral squamous cell carcinoma (OSCC) and compare the occurrence of these mutations in Chinese and Caucasian populations. We used a high-throughput PCR-based enrichment technology and next-generation sequencing (NGS) to sequence NOTCH1 in 144 samples collected in China. Forty-nine samples were normal oral mucosa from patients undergoing oral surgery, 45 were oral leukoplakia biopsies, and 50 were chemoradiation-naïve OSCC samples with 22 paired-normal tissues from the adjacent unaffected areas. NOTCH1 mutations were found in 54% of primary OSCC and 60% of premalignant lesions. Importantly, almost 60% of patients with leukoplakia with mutated NOTCH1 carried mutations that were also identified in OSCC, indicating an important role of these clonal events in the progression of early neoplasms. We then compared all known NOTCH1 mutations identified in Chinese patients with OSCC with those reported in Caucasians to date. Although we found obvious overlaps in critical regulatory NOTCH1 domains alterations and identified specific mutations shared by both groups, possible gain-of-function mutations were predominantly seen in Chinese population. Our findings demonstrate that premalignant lesions display NOTCH1 mutations at an early stage and are thus bona fide drivers of OSCC progression. Moreover, our results reveal that NOTCH1 promotes distinct tumorigenic mechanisms in patients from different ethnical populations.


Asunto(s)
Carcinoma de Células Escamosas/patología , Transformación Celular Neoplásica/patología , Leucoplasia Bucal/patología , Mucosa Bucal/metabolismo , Neoplasias de la Boca/patología , Mutación/genética , Receptor Notch1/genética , Carcinoma de Células Escamosas/genética , Transformación Celular Neoplásica/metabolismo , China , Progresión de la Enfermedad , Humanos , Leucoplasia Bucal/genética , Neoplasias de la Boca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA