Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Physiol ; 600(10): 2429-2460, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35389519

RESUMEN

De novo missense variants in the KCNQ2 gene encoding the Kv7.2 subunit of voltage-gated potassium Kv7/M channels are the main cause of developmental and epileptic encephalopathy with neonatal onset. Although seizures usually resolve during development, cognitive/motor deficits persist. To gain a better understanding of the cellular mechanisms underlying network dysfunction and their progression over time, we investigated in vivo, using local field potential recordings of freely moving animals, and ex vivo in layers II/III and V of motor cortical slices, using patch-clamp recordings, the electrophysiological properties of pyramidal cells from a heterozygous knock-in mouse model carrying the Kv7.2 p.T274M pathogenic variant during neonatal, postweaning and juvenile developmental stages. We found that knock-in mice displayed spontaneous seizures preferentially at postweaning rather than at juvenile stages. At the cellular level, the variant led to a reduction in M ​​current density/conductance and to neuronal hyperexcitability. These alterations were observed during the neonatal period in pyramidal cells of layers II/III and during the postweaning stage in pyramidal cells of layer V. Moreover, there was an increase in the frequency of spontaneous network-driven events mediated by GABA receptors, suggesting that the excitability of interneurons was also increased. However, all these alterations were no longer observed in layers II/III and V of juvenile mice. Thus, our data indicate that the action of the variant is regulated developmentally. This raises the possibility that the age-related seizure remission observed in KCNQ2-related developmental and epileptic encephalopathy patients results from a time-limited alteration of Kv7 channel activity and neuronal excitability. KEY POINTS: The electrophysiological impact of the pathogenic c.821C>T mutation of the KCNQ2 gene (p.T274M variant in Kv7.2 subunit) related to developmental and epileptic encephalopathy has been analysed both in vivo and ex vivo in layers II/III and V of motor cortical slices from a knock-in mouse model during development at neonatal, postweaning and juvenile stages. M current density and conductance are decreased and the excitability of layer II/III pyramidal cells is increased in slices from neonatal and postweaning knock-in mice but not from juvenile knock-in mice. M current and excitability of layer V pyramidal cells are impacted in knock-in mice only at the postweaning stage. Spontaneous GABAergic network-driven events can be recorded until the postweaning stage, and their frequency is increased in layers II/III of the knock-in mice. Knock-in mice display spontaneous seizures preferentially at postweaning rather than at juvenile stages.


Asunto(s)
Encefalopatías , Canal de Potasio KCNQ2 , Convulsiones , Animales , Modelos Animales de Enfermedad , Humanos , Canal de Potasio KCNQ2/genética , Ratones , Proteínas del Tejido Nervioso , Células Piramidales
2.
Epilepsia ; 60(7): 1424-1437, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31158310

RESUMEN

OBJECTIVE: Glutamate-gated N-methyl-d-aspartate receptors (NMDARs) are instrumental to brain development and functioning. Defects in the GRIN2A gene, encoding the GluN2A subunit of NMDARs, cause slow-wave sleep (SWS)-related disorders of the epilepsy-aphasia spectrum (EAS). The as-yet poorly understood developmental sequence of early EAS-related phenotypes, and the role of GluN2A-containing NMDARs in the development of SWS and associated electroencephalographic (EEG) activity patterns, were investigated in Grin2a knockout (KO) mice. METHODS: Early social communication was investigated by ultrasonic vocalization (USV) recordings; the relationship of electrical activity of the cerebral cortex with SWS was studied using deep local field potential or chronic EEG recordings at various postnatal stages. RESULTS: Grin2a KO pups displayed altered USV and increased occurrence of high-voltage spindles. The pattern of slow-wave activity induced by low-dose isoflurane was altered in Grin2a KO mice in the 3rd postnatal week and at 1 month of age. These alterations included strong suppression of the delta oscillation power and an increase in the occurrence of the spike-wave bursts. The proportion of SWS and the sleep quality were transiently reduced in Grin2a KO mice aged 1 month but recovered by the age of 2 months. Grin2a KO mice also displayed spontaneous spike-wave discharges, which occurred nearly exclusively during SWS, at 1 and 2 months of age. SIGNIFICANCE: The impaired vocal communication, the spike-wave discharges occurring almost exclusively in SWS, and the age-dependent alteration of SWS that were all seen in Grin2a KO mice matched the sleep-related and age-dependent manifestations seen in children with EAS, hence validating the Grin2a KO as a reliable model of EAS disorders. Our data also show that GluN2A-containing NMDARs are involved in slow-wave activity, and that the period of postnatal brain development (postnatal day 30) when several anomalies peaked might be critical for GluN2A-dependent, sleep-related physiological and pathological processes.


Asunto(s)
Receptores de N-Metil-D-Aspartato/fisiología , Sueño de Onda Lenta/fisiología , Sueño/fisiología , Vocalización Animal , Animales , Animales Recién Nacidos/fisiología , Electroencefalografía , Femenino , Masculino , Ratones/crecimiento & desarrollo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/metabolismo , Vocalización Animal/fisiología
3.
Glia ; 65(2): 401-415, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27862359

RESUMEN

Glutamate transporters (EAATs) are important to maintain spatial and temporal specificity of synaptic transmission. Their efficiency to uptake and transport glutamate into the intracellular space depends on several parameters including the intracellular concentrations of Na+ and glutamate, the elevations of which may slow down the cycling rate of EAATs. In astrocytes, glutamate is maintained at low concentration due to the presence of specific enzymes such as glutamine synthase (GS). GS inhibition results in cytosolic accumulation of glutamate suggesting that the conversion of glutamate by GS is important for EAATs operation. Here we recorded astrocytes from juvenile rat neocortical slices and analyzed the consequences of elevated intracellular glutamate concentrations and of GS inhibition on the time course of synaptically evoked transporter current (STC). In slices from rats treated with methionine sulfoximine (MSO), a GS inhibitor, STC evoked by short burst of high frequency stimulation (HFS; 100 Hz for 100 ms) but not by low frequency stimulation (LFS; 0.1 Hz) was twice slower than STC evoked from saline injected rats. Same results were obtained for astrocytes recorded with pipette containing 3-10 mM glutamate and compared with cells recorded with 0 or1 mM glutamate in the patch pipette. We also showed that HFS elicited significantly larger NMDAR-excitatory postsynaptic currents (EPSCs) with a stronger peri/extrasynaptic component in pyramidal cells from MSO-treated compared with saline treated rats. Taken together our data demonstrate that the conversion of glutamate by GS is fundamental to ensure an efficient clearance of glutamate by EAATs and to prevent glutamate spillover. GLIA 2017;65:401-415.


Asunto(s)
Astrocitos/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Ácido Glutámico/metabolismo , Neocórtex/citología , Receptores de N-Metil-D-Aspartato/metabolismo , Aminoácidos/metabolismo , Animales , Animales Recién Nacidos , Biofisica , Inhibidores Enzimáticos/farmacología , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , GABAérgicos/farmacología , Humanos , Masculino , Potenciales de la Membrana , Metionina/análogos & derivados , Metionina/farmacología , Ratas , Ratas Wistar , Factores de Tiempo
4.
Epilepsia ; 58(12): 2073-2084, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29067685

RESUMEN

OBJECTIVE: Kv7 channels mediate the voltage-gated M-type potassium current. Reduction of M current due to KCNQ2 mutations causes early onset epileptic encephalopathies (EOEEs). Mutations in STXBP1 encoding the syntaxin binding protein 1 can produce a phenotype similar to that of KCNQ2 mutations, suggesting a possible link between STXBP1 and Kv7 channels. These channels are known to be modulated by syntaxin-1A (Syn-1A) that binds to the C-terminal domain of the Kv7.2 subunit and strongly inhibits M current. Here, we investigated whether STXBP1could prevent this inhibitory effect of Syn-1A and analyzed the consequences of two mutations in STXBP1 associated with EOEEs. METHODS: Electrophysiologic analysis of M currents mediated by homomeric Kv7.2 or heteromeric Kv7.2/Kv7.3 channels in Chinese hamster ovary (CHO) cells coexpressing Syn-1A and/or STXBP1 or mutants STXBP1 p.W28* and p.P480L. Expression and interaction of these different proteins have been investigated using biochemical and co-immunoprecipitation experiments. RESULTS: Syn-1A decreased M currents mediated by Kv7.2 or Kv7.2/Kv7.3 channels. STXBP1 had no direct effects on M current but dampened the inhibition produced by Syn-1A by abrogating Syn-1A binding to Kv7 channels. The mutation p.W28*, but not p.P480L, failed to rescue M current from Syn-1A inhibition. Biochemical analysis showed that unlike the mutation p.W28*, the mutation p.P480L did not affect STXBP1 expression and reduced the interaction of Syn-1A with Kv7 channels. SIGNIFICANCE: These data indicate that there is a functional link between STXBP1 and Kv7 channels via Syn-1A, which may be important for regulating M-channel activity and neuronal excitability. They suggest also that a defect in Kv7 channel activity or regulation could be one of the consequences of some STXBP1 mutations associated with EOEEs. Furthermore, our data reveal that STXBP1 mutations associated with the Ohtahara syndrome do not necessarily result in protein haploinsufficiency.


Asunto(s)
Canal de Potasio KCNQ2/genética , Proteínas Munc18/genética , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/efectos de los fármacos , Espasmos Infantiles/genética , Sintaxina 1/farmacología , Animales , Biotinilación , Células CHO , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Electroencefalografía , Humanos , Canal de Potasio KCNQ1/antagonistas & inhibidores , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ3/antagonistas & inhibidores , Canal de Potasio KCNQ3/genética
5.
Epilepsia ; 57(5): e87-93, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27030113

RESUMEN

Mutations in the KCNQ2 gene encoding the voltage-gated potassium channel subunit Kv7.2 cause early onset epileptic encephalopathy (EOEE). Most mutations have been shown to induce a loss of function or to affect the subcellular distribution of Kv7 channels in neurons. Herein, we investigated functional consequences and subcellular distribution of the p.V175L mutation of Kv7.2 (Kv7.2(V175L) ) found in a patient presenting EOEE. We observed that the mutation produced a 25-40 mV hyperpolarizing shift of the conductance-voltage relationship of both the homomeric Kv7.2(V175L) and heteromeric Kv7.2(V175L) /Kv7.3 channels compared to wild-type channels and a 10 mV hyperpolarizing shift of Kv7.2(V175L) /Kv7.2/Kv7.3 channels in a 1:1:2 ratio mimicking the patient situation. Mutant channels also displayed faster activation kinetics and an increased current density that was prevented by 1 µm linopirdine. The p.V175L mutation did not affect the protein expression of Kv7 channels and its localization at the axon initial segment. We conclude that p.V175L is a gain of function mutation. This confirms previous observations showing that mutations having opposite consequences on M channels can produce EOEE. These findings alert us that drugs aiming to increase Kv7 channel activity might have adverse effects in EOEE in the case of gain-of-function variants.


Asunto(s)
Canal de Potasio KCNQ2/genética , Polimorfismo de Nucleótido Simple/genética , Espasmos Infantiles/genética , Animales , Ancirinas/metabolismo , Anticonvulsivantes/farmacología , Células CHO , Carbamatos/farmacología , Cricetulus , Estimulación Eléctrica , Femenino , Hipocampo/citología , Humanos , Indoles/farmacología , Masculino , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp , Fenilendiaminas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Piridinas/farmacología
6.
Neurobiol Dis ; 80: 80-92, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26007637

RESUMEN

Mutations in the KCNQ2 gene encoding the voltage-dependent potassium M channel Kv7.2 subunit cause either benign epilepsy or early onset epileptic encephalopathy (EOEE). It has been proposed that the disease severity rests on the inhibitory impact of mutations on M current density. Here, we have analyzed the phenotype of 7 patients carrying the p.A294V mutation located on the S6 segment of the Kv7.2 pore domain (Kv7.2(A294V)). We investigated the functional and subcellular consequences of this mutation and compared it to another mutation (Kv7.2(A294G)) associated with a benign epilepsy and affecting the same residue. We report that all the patients carrying the p.A294V mutation presented the clinical and EEG characteristics of EOEE. In CHO cells, the total expression of Kv7.2(A294V) alone, assessed by western blotting, was only 20% compared to wild-type. No measurable current was recorded in CHO cells expressing Kv7.2(A294V) channel alone. Although the total Kv7.2(A294V) expression was rescued to wild-type levels in cells co-expressing the Kv7.3 subunit, the global current density was still reduced by 83% compared to wild-type heteromeric channel. In a configuration mimicking the patients' heterozygous genotype i.e., Kv7.2(A294V)/Kv7.2/Kv7.3, the global current density was reduced by 30%. In contrast to Kv7.2(A294V), the current density of homomeric Kv7.2(A294G) was not significantly changed compared to wild-type Kv7.2. However, the current density of Kv7.2(A294G)/Kv7.2/Kv7.3 and Kv7.2(A294G)/Kv7.3 channels were reduced by 30% and 50% respectively, compared to wild-type Kv7.2/Kv7.3. In neurons, the p.A294V mutation induced a mislocalization of heteromeric mutant channels to the somato-dendritic compartment, while the p.A294G mutation did not affect the localization of the heteromeric channels to the axon initial segment. We conclude that this position is a hotspot of mutation that can give rise to a severe or a benign epilepsy. The p.A294V mutation does not exert a dominant-negative effect on wild-type subunits but alters the preferential axonal targeting of heteromeric Kv7 channels. Our data suggest that the disease severity is not necessarily a consequence of a strong inhibition of M current and that additional mechanisms such as abnormal subcellular distribution of Kv7 channels could be determinant.


Asunto(s)
Encéfalo/fisiopatología , Epilepsia/genética , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/fisiología , Animales , Encéfalo/metabolismo , Células CHO , Células Cultivadas , Cricetulus , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Hipocampo/metabolismo , Humanos , Canal de Potasio KCNQ2/metabolismo , Mutación , Neuronas/metabolismo , Fenotipo
7.
Cereb Cortex ; 23(6): 1484-94, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22628459

RESUMEN

Epileptic encephalopathies comprise a heterogeneous group of severe infantile disorders for which the pathophysiological basis of epilepsy is inaccurately clarified by genotype-phenotype analysis. Because a deficit of GABA neurons has been found in some of these syndromes, notably in patients with X-linked lissencephaly with abnormal genitalia, epilepsy was suggested to result from an imbalance in GABAergic inhibition, and the notion of "interneuronopathy" was proposed. Here, we studied the impact of a polyalanine expansion of aristaless-related homeobox (ARX) gene, a mutation notably found in West and Ohtahara syndromes. Analysis of Arx((GCG)7/Y) knock-in mice revealed that GABA neuron development is not affected. Moreover, pyramidal cell migration and cortical layering are unaltered in these mice. Interestingly, electrophysiological recordings show that hippocampal pyramidal neurons displayed a frequency of inhibitory postsynaptic currents similar to wild-type (WT) mice. However, these neurons show a dramatic increase in the frequency of excitatory inputs associated with a remodeling of their axonal arborization, suggesting that epilepsy in Arx((GCG)7/Y)mice would result from a glutamate network remodeling. We therefore propose that secondary alterations are instrumental for the development of disease-specific phenotypes and should be considered to explain the phenotypic diversity associated with epileptogenic mutations.


Asunto(s)
Neuronas GABAérgicas/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Glutamatos/metabolismo , Proteínas de Homeodominio/genética , Péptidos/genética , Factores de Transcripción/genética , Ácido gamma-Aminobutírico/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Factores de Edad , Animales , Animales Recién Nacidos , Movimiento Celular/genética , Proteína Doblecortina , Electroporación , Embrión de Mamíferos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Neuronas GABAérgicas/citología , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , ARN Interferente Pequeño/genética , Estadísticas no Paramétricas , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/genética , Transfección
8.
J Neurosci ; 29(2): 313-27, 2009 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-19144832

RESUMEN

In human patients, cortical dysplasia produced by Doublecortin (DCX) mutations lead to mental retardation and intractable infantile epilepsies, but the underlying mechanisms are not known. DCX(-/-) mice have been generated to investigate this issue. However, they display no neocortical abnormality, lessening their impact on the field. In contrast, in utero knockdown of DCX RNA produces a morphologically relevant cortical band heterotopia in rodents. On this preparation we have now compared the neuronal and network properties of ectopic, overlying, and control neurons in an effort to identify how ectopic neurons generate adverse patterns that will impact cortical activity. We combined dynamic calcium imaging and anatomical and electrophysiological techniques and report now that DCX(-/-)EGFP(+)-labeled ectopic neurons that fail to migrate develop extensive axonal subcortical projections and retain immature properties, and most of them display a delayed maturation of GABA-mediated signaling. Cortical neurons overlying the heterotopia, in contrast, exhibit a massive increase of ongoing glutamatergic synaptic currents reflecting a strong reactive plasticity. Neurons in both experimental fields are more frequently coactive in coherent synchronized oscillations than control cortical neurons. In addition, both fields displayed network-driven oscillations during evoked epileptiform burst. These results show that migration disorders produce major alterations not only in neurons that fail to migrate but also in their programmed target areas. We suggest that this duality play a major role in cortical dysfunction of DCX brains.


Asunto(s)
Corteza Cerebral/anomalías , Modelos Animales de Enfermedad , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/patología , Red Nerviosa/fisiopatología , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Bicuculina/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/embriología , Corteza Cerebral/patología , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Electroporación/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Antagonistas del GABA/farmacología , Glutamato Descarboxilasa/metabolismo , Ácido Glutámico/farmacología , Proteínas Fluorescentes Verdes/genética , Humanos , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación/genética , Red Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/patología , Neuropéptidos/genética , Embarazo , Quinoxalinas/farmacología , ARN Interferente Pequeño/farmacología , Ratas , Ratas Wistar , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Valina/análogos & derivados , Valina/farmacología , Ácido gamma-Aminobutírico/farmacología
9.
Ann Neurol ; 66(2): 209-18, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19743469

RESUMEN

OBJECTIVE: The mechanisms of epileptogenesis in Sturge-Weber syndrome (SWS) are unknown. We explored the properties of neurons from human pediatric SWS cortex in vitro and tested in particular whether gamma-aminobutyric acid (GABA) excites neurons in SWS cortex, as has been suggested for various types of epilepsies. METHODS: Patch-clamp and field potential recordings and dynamic biphoton imaging were used to analyze cortical tissue samples obtained from four 6- to 14-month-old pediatric SWS patients during surgery. RESULTS: Neurons in SWS cortex were characterized by a relatively depolarized resting membrane potential, as was estimated from cell-attached recordings of N-methyl-D-aspartate channels. Many cells spontaneously fired action potentials at a rate proportional to the level of neuronal depolarization. The reversal potential for GABA-activated currents, assessed by cell-attached single channel recordings, was close to the resting membrane potential. All spontaneously firing neurons recorded in cell-attached mode or imaged with biphoton microscopy were inhibited by GABA. Spontaneous epileptiform activity in the form of recurrent population bursts was suppressed by glutamate receptor antagonists, the GABA(A) receptor agonist isoguvacine, and the positive allosteric GABA(A) modulator diazepam. Blockade of GABA(A) receptors aggravated spontaneous epileptiform activity. The NKCC1 antagonist bumetanide had little effect on epileptiform activity. INTERPRETATION: SWS cortical neurons have a relatively depolarized resting membrane potential and spontaneously fire action potentials that may contribute to increased network excitability. In contrast to previous data depicting excitatory and proconvulsive actions of GABA in certain pediatric and adult epilepsies, GABA plays mainly an inhibitory and anticonvulsive role in SWS pediatric cortex.


Asunto(s)
Corteza Cerebral/fisiopatología , Inhibición Neural/fisiología , Neuronas/fisiología , Síndrome de Sturge-Weber/fisiopatología , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Bumetanida/farmacología , Corteza Cerebral/efectos de los fármacos , Diazepam/farmacología , Epilepsia/tratamiento farmacológico , Epilepsia/fisiopatología , Antagonistas de Aminoácidos Excitadores/farmacología , Agonistas del GABA/farmacología , Moduladores del GABA/farmacología , Agonistas de Receptores de GABA-A , Humanos , Técnicas In Vitro , Lactante , Ácidos Isonicotínicos/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptores de GABA-A/metabolismo , Receptores de Glutamato/metabolismo , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Miembro 2 de la Familia de Transportadores de Soluto 12
10.
Front Cell Neurosci ; 14: 1, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32038177

RESUMEN

The epilepsy of infancy with migrating focal seizures (EIMFS; previously called Malignant migrating partial seizures of infancy) are early-onset epileptic encephalopathies (EOEE) that associate multifocal ictal discharges and profound psychomotor retardation. EIMFS have a genetic origin and are mostly caused by de novo mutations in the KCNT1 gene, and much more rarely in the KCNT2 gene. KCNT1 and KCNT2 respectively encode the KNa1.1 (Slack) and KNa1.2 (Slick) subunits of the sodium-dependent voltage-gated potassium channel KNa. Functional analyses of the corresponding mutant homomeric channels in vitro suggested gain-of-function effects. Here, we report two novel, de novo truncating mutations of KCNT2: one mutation is frameshift (p.L48Qfs43), is situated in the N-terminal domain, and was found in a patient with EOEE (possibly EIMFS); the other mutation is nonsense (p.K564*), is located in the C-terminal region, and was found in a typical EIMFS patient. Using whole-cell patch-clamp recordings, we have analyzed the functional consequences of those two novel KCNT2 mutations on reconstituted KNa1.2 homomeric and KNa1.1/KNa1.2 heteromeric channels in transfected chinese hamster ovary (CHO) cells. We report that both mutations significantly impacted on KNa function; notably, they decreased the global current density of heteromeric channels by ~25% (p.K564*) and ~55% (p.L48Qfs43). Overall our data emphasize the involvement of KCNT2 in EOEE and provide novel insights into the role of heteromeric KNa channel in the severe KCNT2-related epileptic phenotypes. This may have important implications regarding the elaboration of future treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA