Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Soft Matter ; 10(38): 7459-67, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25007292

RESUMEN

We study the pattern formation dynamics related to the displacement of a viscous wetting fluid by a less viscous nonwetting fluid in a lifting Hele-Shaw cell. A perturbative weakly nonlinear analysis of the problem is presented. We focus on examining how wetting effects influence the morphology of the emerging interfacial patterns at the early nonlinear regime. Our analytical results indicate that wettability has a significant impact on the resulting nonlinear patterns. It restrains finger length variability while inducing the development of structures presenting short, blunt penetrating fingers of the nonwetting fluid, alternated by short, sharp fingers of the wetting fluid. The basic mode-coupling mechanisms leading to such behavior are discussed.

2.
Phys Rev E ; 109(1-2): 015104, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38366430

RESUMEN

The lifting Hele-Shaw cell flow commonly involves the stretching of a viscous oil droplet surrounded by air, in the confined space between two parallel plates. As the upper plate is lifted, viscous fingering instabilities emerge at the air-oil interface. Such an interfacial instability phenomenon is widely observed in numerous technological and industrial applications, being quite difficult to control. Motivated by the recent interest in controlling and stabilizing the Saffman-Taylor instability in lifting Hele-Shaw flows, we propose an alternative way to restrain the development of interfacial disturbances in this gap-variable system. Our method modifies the traditional plate-lifting flow arrangement by introducing a finite fluid annulus layer encircling the central oil droplet, and separating it from the air. A second-order, perturbative mode-coupling approach is employed to analyze morphological and stability behaviors in this three-fluid, two-interface, doubly connected system. Our findings indicate that the intermediate fluid ring can significantly stabilize the interface of the central oil droplet. We show that the effectiveness of this stabilization protocol relies on the appropriate choice of the ring's viscosity and thickness. Furthermore, we calculate the adhesion force required to detach the plates, and find that it does not change significantly with the addition of the fluid envelope as long as it is sufficiently thin. Finally, we detect no distinction in the adhesion force computed for stable or unstable annular interfaces, indicating that the presence of fingering at the ring's boundaries has a negligible effect on the adhesion force.

3.
Phys Rev E ; 105(4-2): 045106, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35590587

RESUMEN

We study the dynamics and pattern formation of a ferrofluid annulus enveloped by two nonmagnetic fluids in a Hele-Shaw cell, subjected to an in-plane crossed magnetic field configuration involving the combination of radial and azimuthal magnetic fields. A perturbative, second-order mode-coupling analysis is employed to investigate how the ferrofluid annulus responds to variations in the relative strength of the radial and azimuthal magnetic field components, as well as in the thickness of magnetic fluid ring. By tuning the magnetic field components and the annulus' thickness, we have found the development of several stationary annular shapes, presenting polygon-shaped structures typically having skewed, peaked fingers. Such fingered structures may vary their skewness, sharpness, and number and arise on the inner, outer, or even both boundaries of the annulus. In addition to controlling the morphologies of the ferrofluid annuli, the external field can be used to put the annulus into a rotational motion, with an angular velocity having prescribed magnitude, and direction. Our second-order theory is utilized to obtain a correction to the linear stability analysis prediction of such angular velocity, usually resulting in a decreased weakly nonlinear value as compared with the magnitude predicted by purely linear theory. These theoretical results suggest the use of magnetic-field-controlled ferrofluid annuli in Hele-Shaw cells as a potential laboratory for microscale applications related to the manipulation of shape-programmable magnetic fluid objects and tunable fluidic-mixing devices in confined environments.

4.
Phys Rev E ; 106(5-2): 055109, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36559446

RESUMEN

Developing adhesives whose bond strength can be externally manipulated is a topic of considerable interest for practical and scientific purposes. In this work, we propose a method of controlling the adhesion force of a regular fluid, such as water and/or glycerol, confined between two parallel plates by applying an external electric field. Our results show the possibility of enhancing or diminishing the bond strength of the liquid sample by appropriately tuning the intensity and direction of the electric current generated by the applied electric field. Furthermore, we verify that, for a given direction of the electric current, the adhesion force can be reduced enough for the fluid to lose its adhesive properties and begin exerting a force to move apart the confining plates. In these circumstances, we obtain an analytical expression for the minimum electric current required to detach the plates without requiring the action of an external force.

5.
Phys Rev E ; 104(6-2): 065103, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35030922

RESUMEN

We investigate the flow of a viscous ferrofluid annulus surrounded by two nonmagnetic fluids in a Hele-Shaw cell when subjected to an external radial magnetic field. The interfacial pattern formation dynamics of the system is determined by the interplay of magnetic and surface tension forces acting on the inner and outer boundaries of the annulus, favoring the coupling of the disjoint interfaces. Mode-coupling analysis is employed to examine both linear and weakly nonlinear stages of the flow. Linear stability analysis indicates that the trailing and leading annular boundaries are coupled already at the linear regime, revealing that perturbations arising in the outer interface may induce the emergence of deformed structures in the inner boundary. Moreover, second-order weakly nonlinear analysis is utilized to identify key nonlinear morphological features of the ferrofluid annulus. Our theoretical results show that linear, n-fold symmetric annular patterns having rounded edges are replaced by nonlinear polygonal-like shapes, presenting fairly sharp fingers. It is found that, as opposed to the linear patterns, the nonlinear peaky structures reach a stationary state, characterized by a growth saturation process induced by nonlinear effects. Furthermore, the response of the ferrofluid ring to changes in the thickness of the annulus, in the relative strength of magnetic and surface tensions forces, as well as in the magnetic susceptibility of the ferrofluid material, are also discussed.

6.
Phys Rev E ; 103(6-1): 063105, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34271714

RESUMEN

In this paper, the interfacial motion between two immiscible viscous fluids in the confined geometry of a Hele-Shaw cell is studied. We consider the influence of a thin wetting film trailing behind the displaced fluid, which dynamically affects the pressure drop at the fluid-fluid interface by introducing a nonlinear dependence on the interfacial velocity. In this framework, two cases of interest are analyzed: The injection-driven flow (expanding evolution), and the lifting plate flow (shrinking evolution). In particular, we investigate the possibility of controlling the development of fingering instabilities in these two different Hele-Shaw setups when wetting effects are taken into account. By employing linear stability theory, we find the proper time-dependent injection rate Q(t) and the time-dependent lifting speed b[over ̇](t) required to control the number of emerging fingers during the expanding and shrinking evolution, respectively. Our results indicate that the consideration of wetting leads to an increase in the magnitude of Q(t) [and b[over ̇](t)] in comparison to the nonwetting strategy. Moreover, a spectrally accurate boundary integral approach is utilized to examine the validity and effectiveness of the controlling protocols at the fully nonlinear regime of the dynamics and confirms that the proposed injection and lifting schemes are feasible strategies to prescribe the morphologies of the resulting patterns in the presence of the wetting film.

7.
Phys Rev E ; 104(6-2): 065113, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35030845

RESUMEN

We analyze the morphology and dynamic behavior of the interface separating a ferrofluid and a nonmagnetic fluid in a Hele-Shaw cell, when crossed radial and azimuthal magnetic fields are applied. In addition to inducing the formation of a variety of eye-catching, complex interfacial structures, the action of the crossed fields makes the deformed ferrofluid droplet to rotate. Numerical simulations and perturbative mode-coupling theory are employed to look into early linear, intermediate weakly nonlinear, and fully nonlinear dynamic regimes of the pattern-forming process. We investigate how the system responds to variations in the viscosity difference between the fluids, the magnetic susceptibility of the ferrofluid, the effects of surface tension, and in the relative strength between radial and azimuthal applied magnetic fields. The role played by random perturbations at the initial conditions in determining the ultimate shape and dynamic stability of the spinning ferrofluid patterns is also studied.

8.
Phys Rev E ; 99(2-1): 022608, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30934336

RESUMEN

A thin elastic membrane lying on a fluid substrate deviates from its flat geometry on lateral compression. The compressed membrane folds and wrinkles into many distinct morphologies. We study a magnetoelastic variant of such a problem where a viscous ferrofluid, surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. Elasticity comes into play when the fluids are brought into contact, and due to a chemical reaction, the interface separating them becomes a gel-like elastic layer. A perturbative linear stability theory is used to investigate how the combined action of magnetic and elastic forces can lead to the development of smooth, low-amplitude, sinusoidal wrinkles at the elastic interface. In addition, a nonperturbative vortex sheet approach is employed to examine the emergence of highly nonlinear, magnetically driven, wrinkling and folding equilibrium shape structures. A connection between the magnetoelastic shape solutions induced by a radial magnetic field and those produced by nonmagnetic means through centrifugal forces is also discussed.

9.
Artículo en Inglés | MEDLINE | ID: mdl-26565344

RESUMEN

A central topic in Hele-Shaw flow research is the inclusion of physical effects on the interface between fluids. In this context, the addition of surface tension restrains the emergence of high interfacial curvatures, while consideration of kinetic undercooling effects inhibits the occurrence of high interfacial velocities. By connecting kinetic undercooling to the action of the dynamic contact angle, we show in a quantitative manner that the kinetic undercooling contribution varies as a linear function of the normal velocity at the interface. A perturbative weakly nonlinear analysis is employed to extract valuable information about the influence of kinetic undercooling on the shape of the emerging fingered structures. Under radial Hele-Shaw flow, it is found that kinetic undercooling delays, but does not suppress, the development of finger tip-broadening and finger tip-splitting phenomena. In addition, our results indicate that kinetic undercooling plays a key role in determining the appearance of tip splitting in rectangular Hele-Shaw geometry.

10.
Artículo en Inglés | MEDLINE | ID: mdl-25679704

RESUMEN

Probe-tack measurements evaluate the adhesion strength of viscous fluids confined between parallel plates. This is done by recording the adhesion force that is required to lift the upper plate, while the lower plate is kept at rest. During the lifting process, it is known that the interface separating the confined fluids is deformed, causing the emergence of intricate interfacial fingering structures. Existing meticulous experiments and intensive numerical simulations indicate that fingering formation affects the lifting force, causing a decrease in intensity. In this work, we propose an analytical model that computes the lifting adhesion force by taking into account not only the effect of interfacial fingering, but also the action of wetting and viscous normal stresses. The role played by the system's spatial confinement is also considered. We show that the incorporation of all these physical ingredients is necessary to provide a better agreement between theoretical predictions and experiments.

11.
Artículo en Inglés | MEDLINE | ID: mdl-24329347

RESUMEN

We consider the interfacial motion between two immiscible viscous fluids in the confined geometry of a radial Hele-Shaw cell. In this framework, we investigate the influence of a thin wetting film trailing behind the displaced fluid on the linear and weakly nonlinear dynamics of the system. More specifically, we examine how the interface instability and the pattern formation mechanisms of finger tip splitting and finger competition are affected by the presence of such a film in the low capillary number limit. Our theoretical analysis is carried out by employing a mode-coupling theory, which allows analytic assess to wetting-induced changes in pattern morphology at the onset of nonlinearities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA