RESUMEN
Hyperspectral imaging (HSI) applications for biomedical imaging and dermatological applications have been recently under research interest. Medical HSI applications are non-invasive methods with high spatial and spectral resolution. HS imaging can be used to delineate malignant tumours, detect invasions, and classify lesion types. Typical challenges of these applications relate to complex skin surfaces, leaving some skin areas unreachable. In this study, we introduce a novel spectral imaging concept and conduct a clinical pre-test, the findings of which can be used to develop the concept towards a clinical application. The SICSURFIS spectral imager concept combines a piezo-actuated Fabry-Pérot interferometer (FPI) based hyperspectral imager, a specially designed LED module and several sizes of stray light protection cones for reaching and adapting to the complex skin surfaces. The imager is designed for the needs of photometric stereo imaging for providing the skin surface models (3D) for each captured wavelength. The captured HS images contained 33 selected wavelengths (ranging from 477 nm to 891 nm), which were captured simultaneously with accordingly selected LEDs and three specific angles of light. The pre-test results show that the data collected with the new SICSURFIS imager enable the use of the spectral and spatial domains with surface model information. The imager can reach complex skin surfaces. Healthy skin, basal cell carcinomas and intradermal nevi lesions were classified and delineated pixel-wise with promising results, but further studies are needed. The results were obtained with a convolutional neural network.
Asunto(s)
Imágenes Hiperespectrales , Iluminación , Calibración , Diagnóstico por Imagen , Redes Neurales de la ComputaciónAsunto(s)
Enfermedad de Bowen , Carcinoma Basocelular , Enfermedades de la Piel , Neoplasias Cutáneas , Humanos , Enfermedad de Bowen/diagnóstico por imagen , Enfermedad de Bowen/patología , Imágenes Hiperespectrales , Carcinoma Basocelular/diagnóstico por imagen , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/patologíaRESUMEN
In routine colorectal cancer management, histologic samples stained with hematoxylin and eosin are commonly used. Nonetheless, their potential for defining objective biomarkers for patient stratification and treatment selection is still being explored. The current gold standard relies on expensive and time-consuming genetic tests. However, recent research highlights the potential of convolutional neural networks (CNNs) to facilitate the extraction of clinically relevant biomarkers from these readily available images. These CNN-based biomarkers can predict patient outcomes comparably to golden standards, with the added advantages of speed, automation, and minimal cost. The predictive potential of CNN-based biomarkers fundamentally relies on the ability of CNNs to accurately classify diverse tissue types from whole slide microscope images. Consequently, enhancing the accuracy of tissue class decomposition is critical to amplifying the prognostic potential of imaging-based biomarkers. This study introduces a hybrid deep transfer learning and ensemble machine learning model that improves upon previous approaches, including a transformer and neural architecture search baseline for this task. We employed a pairing of the EfficientNetV2 architecture with a random forest classification head. Our model achieved 96.74% accuracy (95% CI: 96.3%-97.1%) on the external test set and 99.89% on the internal test set. Recognizing the potential of these models in the task, we have made them publicly available.
RESUMEN
Efficient and scalable early diagnostic methods for knee osteoarthritis are desired due to the disease's prevalence. The current automatic methods for detecting osteoarthritis using plain radiographs struggle to identify the subjects with early-stage disease. Tibial spiking has been hypothesized as a feature of early knee osteoarthritis. Previous research has demonstrated an association between knee osteoarthritis and tibial spiking, but the connection to the early-stage disease has not been investigated. We study tibial spiking as a feature of early knee osteoarthritis. Additionally, we develop a deep learning based model for detecting tibial spiking from plain radiographs. We collected and graded 913 knee radiographs for tibial spiking. We conducted two experiments: experiments A and B. In experiment A, we compared the subjects with and without tibial spiking using Mann-Whitney U-test. Experiment B consisted of developing and validating an interpretative deep learning based method for predicting tibial spiking. The subjects with tibial spiking had more severe Kellgren-Lawrence grade, medial joint space narrowing, and osteophyte score in the lateral tibial compartment. The developed method achieved an accuracy of 0.869. We find tibial spiking a promising feature in knee osteoarthritis diagnosis. Furthermore, the detection can be automatized.
RESUMEN
Several optical imaging techniques have been developed to ease the burden of skin cancer disease on our health care system. Hyperspectral images can be used to identify biological tissues by their diffuse reflected spectra. In this second part of a three-phase pilot study, we used a novel hand-held SICSURFIS Spectral Imager with an adaptable field of view and target-wise selectable wavelength channels to provide detailed spectral and spatial data for lesions on complex surfaces. The hyperspectral images (33 wavelengths, 477-891 nm) provided photometric data through individually controlled illumination modules, enabling convolutional networks to utilise spectral, spatial, and skin-surface models for the analyses. In total, 42 lesions were studied: 7 melanomas, 13 pigmented and 7 intradermal nevi, 10 basal cell carcinomas, and 5 squamous cell carcinomas. All lesions were excised for histological analyses. A pixel-wise analysis provided map-like images and classified pigmented lesions with a sensitivity of 87% and a specificity of 93%, and 79% and 91%, respectively, for non-pigmented lesions. A majority voting analysis, which provided the most probable lesion diagnosis, diagnosed 41 of 42 lesions correctly. This pilot study indicates that our non-invasive hyperspectral imaging system, which involves shape and depth data analysed by convolutional neural networks, is feasible for differentiating between malignant and benign pigmented and non-pigmented skin tumours, even on complex skin surfaces.
RESUMEN
In this study we develop a proof of concept of using generative adversarial neural networks in hyperspectral skin cancer imagery production. Generative adversarial neural network is a neural network, where two neural networks compete. The generator tries to produce data that is similar to the measured data, and the discriminator tries to correctly classify the data as fake or real. This is a reinforcement learning model, where both models get reinforcement based on their performance. In the training of the discriminator we use data measured from skin cancer patients. The aim for the study is to develop a generator for augmenting hyperspectral skin cancer imagery.