Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
BMC Genomics ; 24(1): 609, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821828

RESUMEN

BACKGROUND: Since DNA information was first used in taxonomy, barcode sequences such as the internal transcribed spacer (ITS) region have greatly aided fungal identification; however, a barcode sequence alone is often insufficient. Thus, multi-gene- or whole-genome-based methods were developed. We previously isolated Basidiomycota yeasts classified in the Trichosporonales. Some strains were described as Cutaneotrichosporon cavernicola and C. spelunceum, whereas strain HIS471 remained unidentified. We analysed the genomes of these strains to elucidate their taxonomic relationship and genetic diversity. RESULTS: The long-read-based assembly resulted in chromosome-level draft genomes consisting of seven chromosomes and one mitochondrial genome. The genome of strain HIS471 has more than ten chromosome inversions or translocations compared to the type strain of C. cavernicola despite sharing identical ITS barcode sequences and displaying an average nucleotide identity (ANI) above 93%. Also, the chromosome synteny between C. cavernicola and the related species, C. spelunceum, showed significant rearrangements, whereas the ITS sequence identity exceeds 98.6% and the ANI is approximately 82%. Our results indicate that the relative evolutionary rates of barcode sequences, whole-genome nucleotide sequences, and chromosome synteny in Cutaneotrichosporon significantly differ from those in the model yeast Saccharomyces. CONCLUSIONS: Our results revealed that the relative evolutionary rates of nucleotide sequences and chromosome synteny are different among fungal clades, likely because different clades have diverse mutation/repair rates and distinct selection pressures on their genomic sequences and syntenic structures. Because diverse syntenic structures can be a barrier to meiotic recombination and may lead to speciation, the non-linear relationships between nucleotide and synteny diversification indicate that sequence-level distances at the barcode or whole-genome level are not sufficient for delineating species boundaries.


Asunto(s)
Basidiomycota , Genoma Mitocondrial , Sintenía , Secuencia de Bases , Cromosomas , Nucleótidos , Evolución Molecular
3.
Genes Cells ; 18(9): 733-52, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23786411

RESUMEN

Three types of mitosis, which are open, closed or semi-open mitosis, function in eukaryotic cells, respectively. The open mitosis involves breakage of the nuclear envelope before nuclear division, whereas the closed mitosis proceeds with an intact nuclear envelope. To understand the mechanism and significance of three types of mitotic division in eukaryotes, we investigated the process of semi-open mitosis, in which the nuclear envelope is only partially broken, in the fission yeast Schizosaccharomyces japonicus. In anaphase-promoting complex/cyclosome (APC/C) mutants of Sz. japonicus, the nuclear envelope remained relatively intact during anaphase, resulting in impaired semi-open mitosis. As a suppressor of apc2 mutant, a mutation of Oar2, which was a 3-oxoacyl-[acyl carrier protein] reductase, was obtained. The level of the Oar2, which had two destruction-box motifs recognized by APC/C, was increased in APC/C mutants. Furthermore, the defective semi-open mitosis observed in an apc2 mutant was restored by mutated oar2+. Based on these findings, we propose that APC/C regulates the dynamics of the nuclear envelope through degradation of Oar2 dependent on APC/C during the metaphase-to-anaphase transition of semi-open mitosis in Sz. japonicus.


Asunto(s)
Subunidad Apc2 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Fúngicas/metabolismo , Mitosis , Membrana Nuclear/metabolismo , Schizosaccharomyces/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Reductasa/química , 3-Oxoacil-(Proteína Transportadora de Acil) Reductasa/genética , 3-Oxoacil-(Proteína Transportadora de Acil) Reductasa/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Anafase , Subunidad Apc2 del Ciclosoma-Complejo Promotor de la Anafase/genética , Proteínas Fúngicas/genética , Metafase , Datos de Secuencia Molecular , Mutación , Proteolisis , Schizosaccharomyces/citología , Schizosaccharomyces/genética
4.
Eukaryot Cell ; 12(9): 1235-43, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23873862

RESUMEN

Many fungi respond to light and regulate fungal development and behavior. A blue light-activated complex has been identified in Neurospora crassa as the product of the wc-1 and wc-2 genes. Orthologs of WC-1 and WC-2 have hitherto been found only in filamentous fungi and not in yeast, with the exception of the basidiomycete pathogenic yeast Cryptococcus. Here, we report that the fission yeast Schizosaccharomyces japonicus responds to blue light depending on Wcs1 and Wcs2, orthologs of components of the WC complex. Surprisingly, those of ascomycete S. japonicus are more closely related to those of the basidiomycete. S. japonicus reversibly changes from yeast to hyphae in response to environmental stresses. After incubation at 30°C, a colony of yeast was formed, and then hyphal cells extended from the periphery of the colony. When light cycles were applied, distinct dark- and bright-colored hyphal cell stripes were formed because the growing hyphal cells had synchronously activated cytokinesis. In addition, temperature cycles of 30°C for 12 h and 35°C for 12 h or of 25°C for 12 h and 30°C for 12 h during incubation in the dark induced a response in the hyphal cells similar to that of light. The stripe formation of the temperature cycles was independent of the wcs genes. Both light and temperature, which are daily external cues, have the same effect on growing hyphal cells. A dual sensing mechanism of external cues allows organisms to adapt to daily changes of environmental alteration.


Asunto(s)
División Celular , Calor , Fototransducción , Luz , Schizosaccharomyces/fisiología , Citocinesis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifa/metabolismo , Hifa/fisiología , Filogenia , Schizosaccharomyces/metabolismo
5.
Microbiol Spectr ; 11(3): e0424222, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37102973

RESUMEN

Fungal dimorphism involves two morphologies: a unicellular yeast cell and a multicellular hyphal form. Invasion of hyphae into human cells causes severe opportunistic infections. The transition between yeast and hyphal forms is associated with the virulence of fungi; however, the mechanism is poorly understood. Therefore, we aimed to identify factors that induce hyphal growth of Trichosporon asahii, a dimorphic basidiomycete that causes trichosporonosis. T. asahii showed poor growth and formed small cells containing large lipid droplets and fragmented mitochondria when cultivated for 16 h in a nutrient-deficient liquid medium. However, these phenotypes were suppressed via the addition of yeast nitrogen base. When T. asahii cells were cultivated in the presence of different compounds present in the yeast nitrogen base, we found that magnesium sulfate was a key factor for inducing cell elongation, and its addition dramatically restored hyphal growth in T. asahii. In T. asahii hyphae, vacuoles were enlarged, the size of lipid droplets was decreased, and mitochondria were distributed throughout the cell cytoplasm and adjacent to the cell walls. Additionally, hyphal growth was disrupted due to treatment with an actin inhibitor. The actin inhibitor latrunculin A disrupted the mitochondrial distribution even in hyphal cells. Furthermore, magnesium sulfate treatment accelerated hyphal growth in T. asahii for 72 h when the cells were cultivated in a nutrient-deficient liquid medium. Collectively, our results suggest that an increase in magnesium levels triggers the transition from the yeast to hyphal form in T. asahii. These findings will support studies on the pathogenesis of fungi and aid in developing treatments. IMPORTANCE Understanding the mechanism underlying fungal dimorphism is crucial to discern its invasion into human cells. Invasion is caused by the hyphal form rather than the yeast form; therefore, it is important to understand the mechanism of transition from the yeast to hyphal form. To study the transition mechanism, we utilized Trichosporon asahii, a dimorphic basidiomycete that causes severe trichosporonosis since there are fewer studies on T. asahii than on ascomycetes. This study suggests that an increase in Mg2+, the most abundant mineral in living cells, triggers growth of filamentous hyphae and increases the distribution of mitochondria throughout the cell cytoplasm and adjacent to the cell walls in T. asahii. Understanding the mechanism of hyphal growth triggered by Mg2+ increase will provide a model system to explore fungal pathogenicity in the future.


Asunto(s)
Basidiomycota , Trichosporon , Tricosporonosis , Humanos , Trichosporon/genética , Magnesio , Saccharomyces cerevisiae , Tricosporonosis/microbiología , Sulfato de Magnesio , Actinas , Nitrógeno , Antifúngicos/farmacología
6.
Genes Cells ; 16(9): 911-26, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21733045

RESUMEN

During open mitosis in higher eukaryotic cells, the nuclear envelope completely breaks down and then mitotic chromosomes are exposed in the cytoplasm. By contrast, mitosis in lower eukaryotes, including fungi, proceeds with the nucleus enclosed in an intact nuclear envelope. The mechanism of mitosis has been studied extensively in yeast, a closed mitosis organism. Here, we describe a form of mitosis in which the nuclear envelope is torn by elongation of the nucleus in the fission yeast Schizosaccharomyces japonicus. The mitotic nucleus of Sz. japonicus adopted a fusiform shape in anaphase, and its following extension caused separation. Finally, a tear in the nuclear envelope occurred in late anaphase. At the same time, a polarized-biased localization of nuclear pores was seen in the fusiform-shaped nuclear envelope, suggesting a compromise in the mechanical integrity of the lipid membrane. It has been known that nuclear membrane remains intact in some metazoan mitosis. We found that a similar tear of the nuclear envelope was also observed in late mitosis of the Caenorhabditis elegans embryo. These findings provide insight into the diversity of mitosis and the biological significance of breakdown of the nuclear envelope.


Asunto(s)
Núcleo Celular/ultraestructura , Mitosis , Membrana Nuclear/ultraestructura , Schizosaccharomyces/ultraestructura , Anafase , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/ultraestructura , Modelos Biológicos , Poro Nuclear/ultraestructura , Schizosaccharomyces/citología
7.
Yeast ; 29(6): 241-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22641476

RESUMEN

Measuring relative genetic distances is one of the best ways to locate genetic loci. Here we report the construction of a strains set for genetic mapping in Schizosaccharomyces japonicus, which belongs to the genus Schizosaccharomyces together with the well-studied fission yeast Sz. pombe. We constructed 29 strains that bear a positive-negative selection marker at different loci. The marker was inserted every 500 kb in the genome of Sz. japonicus. Each marker thus becomes a 'scale mark' of a chromosome that behaves like a yardstick. By determining the genetic distances from the inserted markers, the relative location of a genomic mutation can be determined. We also constructed a fosmid library that covers an entire genome of Sz. japonicus. These tools together would facilitate identification and cloning of the gene.


Asunto(s)
Biblioteca de Genes , Genética Microbiana/métodos , Genoma Fúngico , Mutagénesis Insercional/métodos , Schizosaccharomyces/genética , Mapeo Cromosómico/métodos , Selección Genética
8.
Med Mycol J ; 63(3): 81-84, 2022.
Artículo en Japonés | MEDLINE | ID: mdl-36047187

RESUMEN

Malassezia are lipophilic yeasts in the skin microbiome that abundantly colonize all parts of human skin except for the soles of the feet. Fungal microbiome analysis of keratotic plugs from the noses of 10 healthy individuals identified Malassezia restricta as the predominant species, followed by Malassezia globosa. Malassezia hyphae were observed in 5 of the 10 individuals. The hyphae were curved and thick-walled with spherical thick-walled and grouped blastoconidia, described as a "spaghetti-and-meatballs" configuration. In this study, we observed Malassezia hyphae in keratotic plugs of healthy subjects, although abundant Malassezia hyphae have previously only been observed in lesional sites of patients with pityriasis versicolor.


Asunto(s)
Malassezia , Tiña Versicolor , Pie , Humanos , Hifa , Piel/microbiología , Tiña Versicolor/microbiología
9.
Microbiol Resour Announc ; 10(19)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986099

RESUMEN

"Pandoraviridae" is a proposed family of the phylum Nucleocytoviricota Its features include an amphora-shaped capsid and the largest genome among all viruses. We report the isolation and genome sequencing of a new member of this family, named Pandoravirus japonicus, the third strain discovered in Japan.

10.
Microbes Environ ; 36(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33612562

RESUMEN

Marseilleviridae is a family of large double-stranded DNA viruses that is currently divided into five subgroups, lineages A-E. Hokutovirus and kashiwazakivirus, both of which belong to lineage B, have been reported to induce host acanthamoeba cells to form aggregations called "bunches". This putatively results in increased opportunities to infect acanthamoeba cells, in contrast to lineage A, which has been reported to not form "bunches". In the present study, we isolated 14 virus strains of the family Marseilleviridae from several Japanese water samples, 11 of which were identified as lineage B viruses. All 11 lineage B strains caused infected amoeba cells to form bunches. We then investigated the involvement of monosaccharides in bunch formation by amoeba cells infected with hokutovirus. Galactose inhibited bunch formation, thereby allowing amoeba cells to delay the process, whereas mannose and glucose did not. A kinetic image analysis of hokutovirus-infected amoeba cells confirmed the inhibition of bunch formation by galactose. The number of hokutovirus-infected amoeba cells increased more rapidly than that of tokyovirus-infected cells, which belongs to lineage A. This result suggests that bunch formation by infected amoeba cells is advantageous for lineage B viruses.


Asunto(s)
Virus ADN/clasificación , Galactosa/metabolismo , Acanthamoeba/virología , Virus ADN/genética , Virus ADN/aislamiento & purificación , Virus ADN/metabolismo , Agua Dulce/virología , Japón , Filogenia
11.
Sci Rep ; 11(1): 8672, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883603

RESUMEN

Recent studies have shown that extracellular vesicles (EVs) can be utilized as appropriate and highly specific biomarkers in liquid biopsy for the diagnosis and prognosis of serious illness. However, there are few methods that can collect and isolate miRNA in EVs simply, quickly and efficiently using general equipment such as a normal centrifuge. In this paper, we developed an advanced glass membrane column (AGC) device incorporating a size-controlled macro-porous glass (MPG) membrane with a co-continuous structure to overcome the limitations of conventional EV collection and miRNA extraction from the EVs. The size of macro-pores in the MPG membrane could be accurately controlled by changing the heating temperature and time on the basis of spinodal decomposition of B2O3, Na2O, and SiO2 in phase separation. The AGC device with an MPG membrane could collect the EVs simply and quickly (< 10 min) from cell culture supernatant, serum and urine. This AGC device could extract miRNA from the EVs captured in the MPG membrane with high efficiency when combined with a miRNA extraction solution. We suggest that the AGC device with an MPG membrane can be useful for the diagnosis and prognosis of serious illness using of EVs in various kinds of body fluids.


Asunto(s)
Vesículas Extracelulares/genética , MicroARNs/aislamiento & purificación , Vesículas Extracelulares/química , Vesículas Extracelulares/ultraestructura , Vidrio , Células Hep G2 , Humanos , Biopsia Líquida/métodos , Membranas , MicroARNs/orina , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Porosidad
12.
Yeast ; 27(12): 1049-60, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20737410

RESUMEN

Schizosaccharomyces japonicus is a fission yeast for which new genetic tools have recently been developed. Here, we report novel plasmid vectors with high transformation efficiency and an electroporation method for Sz. japonicus. We isolated 44 replicating segments from 12 166 transformants of Sz. japonicus genomic fragments and found a chromosomal fragment, RS1, as a new replicating sequence that conferred high transformation activity to Sz. japonicus cells. This sequence was cloned into a pUC19 vector with ura4(+) of Sz. pombe (pSJU11) or the kan gene on the kanMX6 module (pSJK11) as selection markers. These plasmids transformed Sz. japonicus cells in the early-log phase by electroporation at a frequency of 123 cfu/µg for pSJK11 and 301 cfu/µg for pSJU11, which were higher than previously reported autonomously replicating sequences. Although a portion of plasmids remained in host cells by integration into the chromosome via RS1 segment, the plasmids could be recovered from transformants. The plasmid copy number was estimated to be 1.88 copies per cell by Southern blot analysis using a Sz. pombe ura4(+) probe. The plasmid containing ade6(+) suppressed the auxotrophic growth of the ade6-domE mutant, indicating that the plasmid would be useful for suppressor screening and complementation assays in Sz. japonicus. Furthermore, pSJU11 transformed Sz. pombe cells with the same frequency as the pREP2 plasmid. This study is a report to demonstrate practical use of episomal plasmid vectors for genetic research in Sz. japonicus.


Asunto(s)
Técnicas Genéticas , Vectores Genéticos/genética , Plásmidos/genética , Schizosaccharomyces/genética , Transformación Genética , Datos de Secuencia Molecular , Schizosaccharomyces/crecimiento & desarrollo
13.
Inorg Chem ; 49(11): 5316-27, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20420391

RESUMEN

We report on molecular recognition of inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)), an important intracellular second messenger, and some related model compounds, cyclohexanediol bisphosphate derivatives (CDP(2)), by ditopic Zn(2+) complexes containing chiral linkers ((S,S)- and (R,R)-11) in aqueous solution at physiological pH. A crystal structure analysis of (S,S)-11 indicated that the distance between two Zn(2+) ions (6.8 A) is suitable for accommodating two phosphate groups at the 4- and 5-positions of Ins(1,4,5)P(3) and two phosphate groups of trans-1,2-CDP(2). (1)H NMR, (31)P NMR, potentiometric pH, and isothermal calorimetric titration data indicate that (S,S)-11 forms 1:1 complexes with (S,S)- and (R,R)-1,2-CDP(2) at pH 7.4 and 25 degrees C. The apparent 1:1 complexation constants (log K(app)) for (S,S)-11-(S,S)-1,2-CDP(2) and (S,S)-11-(R,R)-1,2-CDP(2) (K(app) = [(S,S)-11-1,2-CDP(2) complex]/[(S,S)-11][1,2-CDP(2)] (M(-1))) were determined to be 7.6 +/- 0.1 and 7.3 +/- 0.1, respectively, demonstrating that both enantiomers of 11 bind to chiral trans-1,2-CDP(2) to almost the same extent. The log K(app) value of 6.3 was obtained for a 1:1 complex of (S,S)-11 with cis-1,3-CDP(2), while a small amount of 2:1 (S,S)-11-cis-1,3-CDP(2) was detected, as evidenced by electrospray ionization mass spectrometry (ESI-MS). In contrast, 11 formed several complexes with trans-1,4-CDP(2). On the basis of isothermal titration calorimetry data for (S,S)- and (R,R)-11 with Ins(1,4,5)P(3), it was concluded that 11 forms a 2:1 complex with Ins(1,4,5)P(3), in which the first molecule of 11 binds to the 4- and 5-phosphates of Ins(1,4,5)P(3) and the second molecule of 11 binds to the 1- and 5-phosphates.


Asunto(s)
Inositol 1,4,5-Trifosfato/química , Compuestos Organometálicos/química , Zinc/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Soluciones , Estereoisomerismo , Agua/química
14.
J Hepatobiliary Pancreat Sci ; 27(5): 265-272, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31943809

RESUMEN

BACKGROUND: Pancreatic juice reflux to the common bile duct and gallbladder is observed in the pancreaticobiliary maljunction (PBM), and various pathological conditions occur in the biliary tract. However, the mechanism of pancreatic juice reflux has not been discussed yet. This study aimed to investigate the mechanism of this phenomenon from the perspective of the fluid dynamics theory. METHODS: A fluid dynamics model of PBM without biliary dilatation having gallbladder function and of the pressure of sphincter of Oddi was developed. Water (as bile juice and pancreatic juice) was flowed to these models with a flow rate similar to that in humans. Pancreatic and bile juice flow and bile duct pressure were observed in three phases of gallbladder function. Moreover, the same experiment was performed in the PBM without biliary dilatation model without gallbladder. RESULTS: Pancreatic juice reflux could be observed when the gallbladder was passively expanded with the pressure in the bile duct lower than that in the sphincter of Oddi. However, pancreatic juice reflux was not observed in the model without gallbladder. CONCLUSIONS: Gallbladder function may be strongly involved in pancreatic juice reflux in PBM without biliary dilatation. Cholecystectomy may be able to stop the reflux of pancreatic juice.


Asunto(s)
Conducto Colédoco/fisiopatología , Conductos Pancreáticos/fisiopatología , Jugo Pancreático , Mala Unión Pancreaticobiliar/fisiopatología , Colangiopancreatografia Retrógrada Endoscópica , Conducto Colédoco/diagnóstico por imagen , Humanos , Hidrodinámica , Conductos Pancreáticos/diagnóstico por imagen , Mala Unión Pancreaticobiliar/diagnóstico
15.
Commun Biol ; 3(1): 202, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32355220

RESUMEN

Homologous recombination between repetitive sequences can lead to gross chromosomal rearrangements (GCRs). At fission yeast centromeres, Rad51-dependent conservative recombination predominantly occurs between inverted repeats, thereby suppressing formation of isochromosomes whose arms are mirror images. However, it is unclear how GCRs occur in the absence of Rad51 and how GCRs are prevented at centromeres. Here, we show that homology-mediated GCRs occur through Rad52-dependent single-strand annealing (SSA). The rad52-R45K mutation, which impairs SSA activity of Rad52 protein, dramatically reduces isochromosome formation in rad51 deletion cells. A ring-like complex Msh2-Msh3 and a structure-specific endonuclease Mus81 function in the Rad52-dependent GCR pathway. Remarkably, mutations in replication fork components, including DNA polymerase α and Swi1/Tof1/Timeless, change the balance between Rad51-dependent recombination and Rad52-dependent SSA at centromeres, increasing Rad52-dependent SSA that forms isochromosomes. Our results uncover a role of DNA replication machinery in the recombination pathway choice that prevents Rad52-dependent GCRs at centromeres.


Asunto(s)
Centrómero/genética , Replicación del ADN , Reordenamiento Génico , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-32974220

RESUMEN

Murid and cricetid rodents were previously believed to be the principal reservoir hosts of hantaviruses. Recently, however, multiple newfound hantaviruses have been discovered in shrews, moles, and bats, suggesting a complex evolutionary history. Little is known about the genetic diversity and geographic distribution of the prototype shrew-borne hantavirus, Thottapalayam thottimvirus (TPMV), carried by the Asian house shrew (Suncus murinus), which is widespread in Asia, Africa, and the Middle East. Comparison of TPMV genomic sequences from two Asian house shrews captured in Myanmar and Pakistan with TPMV strains in GenBank revealed that the Myanmar TPMV strain (H2763) was closely related to the prototype TPMV strain (VRC66412) from India. In the L-segment tree, on the other hand, the Pakistan TPMV strain (PK3629) appeared to be the most divergent, followed by TPMV strains from Nepal, then the Indian-Myanmar strains, and finally TPMV strains from China. The Myanmar strain of TPMV showed sequence similarity of 79.3-96.1% at the nucleotide level, but the deduced amino acid sequences showed a high degree of conservation of more than 94% with TPMV strains from Nepal, India, Pakistan, and China. Cophylogenetic analysis of host cytochrome b and TPMV strains suggested that the Pakistan TPMV strain was mismatched. Phylogenetic trees, based on host cytochrome b and cytochrome c oxidase subunit I genes of mitochondrial DNA, and on host recombination activating gene 1 of nuclear DNA, suggested that the Asian house shrew and Asian highland shrew (Suncus montanus) comprised a species complex. Overall, the geographic-specific clustering of TPMV strains in Asian countries suggested local host-specific adaptation. Additional in-depth studies are warranted to ascertain if TPMV originated in Asian house shrews on the Indian subcontinent.


Asunto(s)
Variación Genética , Musarañas , África , Animales , China , India , Nepal , Pakistán , Filogenia , Filogeografía
18.
Curr Biol ; 16(16): 1627-35, 2006 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-16920624

RESUMEN

Shortened kinetochore microtubules take separated chromatids to the opposing spindle poles in anaphase. Fission yeast Dis1 belongs to the Dis1/XMAP215/TOG family that is required for proper microtubule dynamics. Here, we report that Dis1is regulated by Cdc2 phosphorylation and that this mitotic phosphorylation ensures the fidelity of chromosome segregation. Whereas mutants Dis1(6A) and Dis1(6E) that substitute all of the six Cdc2 sites for Ala or Glu, respectively, produce colonies at 22 degrees C-36 degrees C, Dis1(6A) but not Dis1(6E) loses a minichromosome and reveals aberrant chromosome segregation at significant frequencies. Dis1(WT) is recruited to two regions of the mitotic spindle: kinetochores (possibly also kinetochore microtubules) in metaphase and the pole-to-pole microtubule lattice in anaphase. Mutant Dis1(6E) preferentially binds to metaphase kinetochores, whereas Dis1(6A), which is located along microtubules, fails in its accumulation at kinetochores. Dis1(6A) displays synthetic lethality with the mis12-537, which is a mutant that compromises kinetochore function. Dis1(6E) mimics the Cdc2-phosphorylated form of Dis1(WT), whereas Dis1(6A) can partially rescue the phenotype resulting form deletion of Mtc1/Alp14, another XMAP215-like protein. In anaphase, dephosphorylated Dis1 and Dis1(6A), but not Dis1(6E), move to the spindle microtubule lattice near the SPBs. Cdc2 thus directly phosphorylates Dis1, and this phosphorylation regulates Dis1 localization in both metaphase and anaphase and ensures high-fidelity segregation.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Segregación Cromosómica/fisiología , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Huso Acromático/metabolismo , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Mutación/genética , Fosforilación , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/genética
19.
Front Microbiol ; 10: 3014, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038516

RESUMEN

Tracking cell motility is a useful tool for the study of cell physiology and microbiology. Although phase-contrast microscopy is commonly used, the existence of optical artifacts called "halo" and "shade-off" have inhibited image analysis of moving cells. Here we show kinetic image analysis of Acanthamoeba motility using a newly developed computer program named "Phase-contrast-based Kinetic Analysis Algorithm for Amoebae (PKA3)," which revealed giant-virus-infected amoebae-specific motilities and aggregation profiles using time-lapse phase-contrast microscopic images. This program quantitatively detected the time-dependent, sequential changes in cellular number, size, shape, and direction and distance of cell motility. This method expands the potential of kinetic analysis of cultured cells using versatile phase-contrast images. Furthermore, this program could be a useful tool for investigating detailed kinetic mechanisms of cell motility, not only in virus-infected amoebae but also in other cells, including cancer cells, immune response cells, and neurons.

20.
Biochem Mol Biol Educ ; 47(4): 426-431, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31021444

RESUMEN

Several educational trials on handling viruses and or virology have been reported. However, given their small size, direct visualization of these viruses under a microscope has been rarely performed. The so-called "giant viruses" are larger than other viruses with a particle size greater than 200-300 nm. This enables their direct visualization under a light microscope more easily than other viruses. In this study, we developed two new types of teaching material for learning about viruses and cellular organisms using mimivirus, one of the well-known giant viruses. One teaching material involves using glass slides with enclosed mimivirus particles, and another is a paper-based teaching material, named VIRAMOS (http://tlab-edusys.azurewebsites.net/content/viramos_en.pdf). Using these, students can investigate and learn about viruses and cellular organisms. © 2019 International Union of Biochemistry and Molecular Biology, 47(4):426-431, 2019.


Asunto(s)
Biología/educación , Visualización de Datos , Virus Gigantes/química , Microscopía , Virión/química , Humanos , Aprendizaje , Estudiantes , Enseñanza , Universidades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA