Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(2): 105624, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176651

RESUMEN

The glycosylation of proteins and lipids is known to be closely related to the mechanisms of various diseases such as influenza, cancer, and muscular dystrophy. Therefore, it has become clear that the analysis of post-translational modifications of proteins, including glycosylation, is important to accurately understand the functions of each protein molecule and the interactions among them. In order to conduct large-scale analyses more efficiently, it is essential to promote the accumulation, sharing, and reuse of experimental and analytical data in accordance with the FAIR (Findability, Accessibility, Interoperability, and Re-usability) data principles. However, a FAIR data repository for storing and sharing glycoconjugate information, including glycopeptides and glycoproteins, in a standardized format did not exist. Therefore, we have developed GlyComb (https://glycomb.glycosmos.org) as a new standardized data repository for glycoconjugate data. Currently, GlyComb can assign a unique identifier to a set of glycosylation information associated with a specific peptide sequence or UniProt ID. By standardizing glycoconjugate data via GlyComb identifiers and coordinating with existing web resources such as GlyTouCan and GlycoPOST, a comprehensive system for data submission and data sharing among researchers can be established. Here we introduce how GlyComb is able to integrate the variety of glycoconjugate data already registered in existing data repositories to obtain a better understanding of the available glycopeptides and glycoproteins, and their glycosylation patterns. We also explain how this system can serve as a foundation for a better understanding of glycan function.


Asunto(s)
Bases de Datos de Compuestos Químicos , Glicómica , Proteómica , Glicopéptidos/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Polisacáridos/metabolismo , Bases de Datos Genéticas
2.
Anal Bioanal Chem ; 416(16): 3687-3696, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38748247

RESUMEN

Glycans participate in a vast number of recognition systems in diverse organisms in health and in disease. However, glycans cannot be sequenced because there is no sequencer technology that can fully characterize them. There is no "template" for replicating glycans as there are for amino acids and nucleic acids. Instead, glycans are synthesized by a complicated orchestration of multitudes of glycosyltransferases and glycosidases. Thus glycans can vary greatly in structure, but they are not genetically reproducible and are usually isolated in minute amounts. To characterize (sequence) the glycome (defined as the glycans in a particular organism, tissue, cell, or protein), glycosylation pathway prediction using in silico methods based on glycogene expression data, and glycosylation simulations have been attempted. Since many of the mammalian glycogenes have been identified and cloned, it has become possible to predict the glycan biosynthesis pathway in these systems. By then incorporating systems biology and bioprocessing technologies to these pathway models, given the right enzymatic parameters including enzyme and substrate concentrations and kinetic reaction parameters, it is possible to predict the potentially synthesized glycans in the pathway. This review presents information on the data resources that are currently available to enable in silico simulations of glycosylation and related pathways. Then some of the software tools that have been developed in the past to simulate and analyze glycosylation pathways will be described, followed by a summary and vision for the future developments and research directions in this area.


Asunto(s)
Simulación por Computador , Polisacáridos , Glicosilación , Polisacáridos/metabolismo , Polisacáridos/química , Animales , Humanos , Programas Informáticos , Glicosiltransferasas/metabolismo
3.
Glycobiology ; 33(6): 454-463, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37129482

RESUMEN

The GlyCosmos Glycoscience Portal (https://glycosmos.org) and PubChem (https://pubchem.ncbi.nlm.nih.gov/) are major portals for glycoscience and chemistry, respectively. GlyCosmos is a portal for glycan-related repositories, including GlyTouCan, GlycoPOST, and UniCarb-DR, as well as for glycan-related data resources that have been integrated from a variety of 'omics databases. Glycogenes, glycoproteins, lectins, pathways, and disease information related to glycans are accessible from GlyCosmos. PubChem, on the other hand, is a chemistry-based portal at the National Center for Biotechnology Information. PubChem provides information not only on chemicals, but also genes, proteins, pathways, as well as patents, bioassays, and more, from hundreds of data resources from around the world. In this work, these 2 portals have made substantial efforts to integrate their complementary data to allow users to cross between these 2 domains. In addition to glycan structures, key information, such as glycan-related genes, relevant diseases, glycoproteins, and pathways, was integrated and cross-linked with one another. The interfaces were designed to enable users to easily find, access, download, and reuse data of interest across these resources. Use cases are described illustrating and highlighting the type of content that can be investigated. In total, these integrations provide life science researchers improved awareness and enhanced access to glycan-related information.


Asunto(s)
Bases de Datos de Compuestos Químicos , Polisacáridos , Glicosilación , Flujo de Trabajo , Informática , Polisacáridos/química , Glicoconjugados/química
4.
Glycobiology ; 33(5): 411-422, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37067908

RESUMEN

Protein N-linked glycosylation is an important post-translational mechanism in Homo sapiens, playing essential roles in many vital biological processes. It occurs at the N-X-[S/T] sequon in amino acid sequences, where X can be any amino acid except proline. However, not all N-X-[S/T] sequons are glycosylated; thus, the N-X-[S/T] sequon is a necessary but not sufficient determinant for protein glycosylation. In this regard, computational prediction of N-linked glycosylation sites confined to N-X-[S/T] sequons is an important problem that has not been extensively addressed by the existing methods, especially in regard to the creation of negative sets and leveraging the distilled information from protein language models (pLMs). Here, we developed LMNglyPred, a deep learning-based approach, to predict N-linked glycosylated sites in human proteins using embeddings from a pre-trained pLM. LMNglyPred produces sensitivity, specificity, Matthews Correlation Coefficient, precision, and accuracy of 76.50, 75.36, 0.49, 60.99, and 75.74 percent, respectively, on a benchmark-independent test set. These results demonstrate that LMNglyPred is a robust computational tool to predict N-linked glycosylation sites confined to the N-X-[S/T] sequon.


Asunto(s)
Aminoácidos , Glicoproteínas , Humanos , Glicosilación , Glicoproteínas/metabolismo , Aminoácidos/química , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos
5.
Nucleic Acids Res ; 49(D1): D1523-D1528, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33174597

RESUMEN

For the reproducibility and sustainability of scientific research, FAIRness (Findable, Accessible, Interoperable and Re-usable), with respect to the release of raw data obtained by researchers, is one of the most important principles underpinning the future of open science. In genomics and transcriptomics, the sharing of raw data from next-generation sequencers is made possible through public repositories. In addition, in proteomics, the deposition of raw data from mass spectrometry (MS) experiments into repositories is becoming standardized. However, a standard repository for such MS data had not yet been established in glycomics. With the increasing number of glycomics MS data, therefore, we have developed GlycoPOST (https://glycopost.glycosmos.org/), a repository for raw MS data generated from glycomics experiments. In just the first year since the release of GlycoPOST, 73 projects have already been registered by researchers around the world, and the number of registered projects is continuously growing, making a significant contribution to the future FAIRness of the glycomics field. GlycoPOST is a free resource to the community and accepts (and will continue to accept in the future) raw data regardless of vendor-specific formats.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Factuales , Glicómica/métodos , Espectrometría de Masas/estadística & datos numéricos , Programas Informáticos , Glicómica/normas , Humanos , Difusión de la Información/ética , Internet , Espectrometría de Masas/métodos , Espectrometría de Masas/normas , Reproducibilidad de los Resultados , Manejo de Especímenes/métodos , Manejo de Especímenes/normas
6.
Nucleic Acids Res ; 49(D1): D1529-D1533, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33125071

RESUMEN

Glycans serve important roles in signaling events and cell-cell communication, and they are recognized by lectins, viruses and bacteria, playing a variety of roles in many biological processes. However, there was no system to organize the plethora of glycan-related data in the literature. Thus GlyTouCan (https://glytoucan.org) was developed as the international glycan repository, allowing researchers to assign accession numbers to glycans. This also aided in the integration of glycan data across various databases. GlyTouCan assigns accession numbers to glycans which are defined as sets of monosaccharides, which may or may not be characterized with linkage information. GlyTouCan was developed to be able to recognize any level of ambiguity in glycans and uniquely assign accession numbers to each of them, regardless of the input text format. In this manuscript, we describe the latest update to GlyTouCan in version 3.0, its usage, and plans for future development.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Factuales , Polisacáridos/clasificación , Programas Informáticos , Humanos , Cooperación Internacional , Internet , Polisacáridos/análisis , Polisacáridos/química , Terminología como Asunto
7.
Glycobiology ; 32(8): 646-650, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35452093

RESUMEN

High-performance liquid chromatography (HPLC) elution data provide a useful tool for quantitative glycosylation profiling, discriminating isomeric oligosaccharides. The web application Glycoanalysis by the Three Axes of MS and Chromatography (GALAXY), which is based on the three-dimensional HPLC map of N-linked oligosaccharides with pyridyl-2-amination developed by Dr. Noriko Takahashi, has been extensively used for N-glycosylation profiling at molecular, cellular, and tissue levels. Herein, we describe the updated GALAXY as version 3, which includes new HPLC data including those of glucuronylated and sulfated glycans, an improved graphical user interface using modern technologies, and linked to glycan information in GlyTouCan and the GlyCosmos Portal. This liaison will facilitate glycomic analyses of human and other organisms in conjunction with multiomics data.


Asunto(s)
Oligosacáridos , Polisacáridos , Cromatografía Líquida de Alta Presión/métodos , Glicosilación , Humanos , Oligosacáridos/química , Polisacáridos/química
8.
Glycobiology ; 32(7): 552-555, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35352122

RESUMEN

Glycan microarrays are essential tools in glycobiology and are being widely used for assignment of glycan ligands in diverse glycan recognition systems. We have developed a new software, called Carbohydrate microArray Analysis and Reporting Tool (CarbArrayART), to address the need for a distributable application for glycan microarray data management. The main features of CarbArrayART include: (i) Storage of quantified array data from different array layouts with scan data and array-specific metadata, such as lists of arrayed glycans, array geometry, information on glycan-binding samples, and experimental protocols. (ii) Presentation of microarray data as charts, tables, and heatmaps derived from the average fluorescence intensity values that are calculated based on the imaging scan data and array geometry, as well as filtering and sorting functions according to monosaccharide content and glycan sequences. (iii) Data export for reporting in Word, PDF, and Excel formats, together with metadata that are compliant with the guidelines of MIRAGE (Minimum Information Required for A Glycomics Experiment). CarbArrayART is designed for routine use in recording, storage, and management of any slide-based glycan microarray experiment. In conjunction with the MIRAGE guidelines, CarbArrayART addresses issues that are critical for glycobiology, namely, clarity of data for evaluation of reproducibility and validity.


Asunto(s)
Glicómica , Polisacáridos , Glicómica/métodos , Almacenamiento y Recuperación de la Información , Análisis por Micromatrices/métodos , Polisacáridos/química , Reproducibilidad de los Resultados , Programas Informáticos
9.
Molecules ; 27(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35335136

RESUMEN

Glycan biosynthesis simulation research has progressed remarkably since 1997, when the first mathematical model for N-glycan biosynthesis was proposed. An O-glycan model has also been developed to predict O-glycan biosynthesis pathways in both forward and reverse directions. In this work, we started with a set of O-glycan profiles of CHO cells transiently transfected with various combinations of glycosyltransferases. The aim was to develop a model that encapsulated all the enzymes in the CHO transfected cell lines. Due to computational power restrictions, we were forced to focus on a smaller set of glycan profiles, where we were able to propose an optimized set of kinetics parameters for each enzyme in the model. Using this optimized model we showed that the abundance of more processed glycans could be simulated compared to observed abundance, while predicting the abundance of glycans earlier in the pathway was less accurate. The data generated show that for the accurate prediction of O-linked glycosylation, additional factors need to be incorporated into the model to better reflect the experimental conditions.


Asunto(s)
Polisacáridos , Animales , Células CHO , Simulación por Computador , Cricetinae , Cricetulus , Glicosilación , Polisacáridos/metabolismo
10.
BMC Bioinformatics ; 22(1): 505, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663219

RESUMEN

BACKGROUND: Glycan-related genes play a fundamental role in various processes for energy acquisition and homeostasis maintenance while adapting to the environment in which the organism exists; however, their role in the microbiome in the environment is unclear. METHODS: Sequence alignment was performed between known glycan-related genes and complete genomes of microorganisms, and optimal parameters for identifying glycan-related genes were determined based on the alignments. Using the constructed scheme (> 90% of identity and > 25 aa of alignment length), glycan-related genes in various environments were identified from 198 different metagenome data. RESULTS: As a result, we identified 86.73 million glycan-related genes from the metagenome data. Among the 12 environments classified in this study, the percentage of glycan-related genes was high in the human-associated environment, suggesting that these environments utilize glycan metabolism better than other environments. On the other hand, the relative abundances of both glycoside hydrolases and glycosyltransferases surprisingly had a coverage of over 80% in all the environments. These glycoside hydrolases and glycosyltransferases were classified into two groups of (1) general enzyme families identified in various environments and (2) specific enzymes found only in certain environments. The general enzyme families were mostly from genes involved in monosaccharide metabolism, and most of the specific enzymes were polysaccharide degrading enzymes. CONCLUSION: These findings suggest that environmental microorganisms could change the composition of their glycan-related genes to adapt the processes involved in acquiring energy from glycans in their environments. Our functional glyco-metagenomics approach has made it possible to clarify the relationship between the environment and genes from the perspective of carbohydrates, and the existence of glycan-related genes that exist specifically in the environment.


Asunto(s)
Metagenoma , Metagenómica , Adaptación Fisiológica , Glicósido Hidrolasas , Humanos , Polisacáridos
11.
J Proteome Res ; 20(4): 2069-2075, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33657805

RESUMEN

Laser microdissection-assisted lectin microarray has been used to obtain quantitative and qualitative information on glycans on proteins expressed in microscopic regions of formalin-fixed paraffin-embedded tissue sections. For the effective visualization of this "tissue glycome mapping" data, a novel online tool, LM-GlycomeAtlas (https://glycosmos.org/lm_glycomeatlas/index), was launched in the freely available glycoscience portal, the GlyCosmos Portal (https://glycosmos.org). In LM-GlycomeAtlas Version 1.0, nine tissues from normal mice were used to provide one data set of glycomic profiles. Here we introduce an updated version of LM-GlycomeAtlas, which includes more spatial information. We designed it to deposit multiple data sets of glycomic profiles with high-resolution histological images, which included staining images with multiple lectins on the array. The additionally implemented interfaces allow users to display multiple histological images of interest (e.g., diseased and normal mice), thereby facilitating the evaluation of tissue glycomic profiling and glyco-pathological analysis. Using these updated interfaces, 451 glycomic profiling data and 42 histological images obtained from 14 tissues of normal and diseased mice were successfully visualized. By easy integration with other tools for glycoproteomic data and protein glycosylation machinery, LM-GlycomeAtlas will be one of the most valuable open resources that contribute to both glycoscience and proteomics communities.


Asunto(s)
Glicómica , Lectinas , Animales , Histocitoquímica , Ratones , Análisis por Micromatrices , Polisacáridos , Proteómica
12.
Glycobiology ; 31(7): 741-750, 2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-33677548

RESUMEN

Recent years have seen great advances in the development of glycoproteomics protocols and methods resulting in a sustainable increase in the reporting proteins, their attached glycans and glycosylation sites. However, only very few of these reports find their way into databases or data repositories. One of the major reasons is the absence of digital standard to represent glycoproteins and the challenging annotations with glycans. Depending on the experimental method, such a standard must be able to represent glycans as complete structures or as compositions, store not just single glycans but also represent glycoforms on a specific glycosylation side, deal with partially missing site information if no site mapping was performed, and store abundances or ratios of glycans within a glycoform of a specific site. To support the above, we have developed the GlycoConjugate Ontology (GlycoCoO) as a standard semantic framework to describe and represent glycoproteomics data. GlycoCoO can be used to represent glycoproteomics data in triplestores and can serve as a basis for data exchange formats. The ontology, database providers and supporting documentation are available online (https://github.com/glycoinfo/GlycoCoO).


Asunto(s)
Glicoproteínas , Polisacáridos , Glicoproteínas/metabolismo , Glicosilación , Polisacáridos/metabolismo
13.
Bioinformatics ; 36(12): 3941-3943, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32324859

RESUMEN

SUMMARY: Glycoinformatics plays a major role in glycobiology research, and the development of a comprehensive glycoinformatics knowledgebase is critical. This application note describes the GlyGen data model, processing workflow and the data access interfaces featuring programmatic use case example queries based on specific biological questions. The GlyGen project is a data integration, harmonization and dissemination project for carbohydrate and glycoconjugate-related data retrieved from multiple international data sources including UniProtKB, GlyTouCan, UniCarbKB and other key resources. AVAILABILITY AND IMPLEMENTATION: GlyGen web portal is freely available to access at https://glygen.org. The data portal, web services, SPARQL endpoint and GitHub repository are also freely available at https://data.glygen.org, https://api.glygen.org, https://sparql.glygen.org and https://github.com/glygener, respectively. All code is released under license GNU General Public License version 3 (GNU GPLv3) and is available on GitHub https://github.com/glygener. The datasets are made available under Creative Commons Attribution 4.0 International (CC BY 4.0) license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bases del Conocimiento , Programas Informáticos , Glicómica , Almacenamiento y Recuperación de la Información , Flujo de Trabajo
14.
Molecules ; 26(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34885724

RESUMEN

In life science fields, database integration is progressing and contributing to collaboration between different research fields, including the glycosciences. The integration of glycan databases has greatly progressed collaboration worldwide with the development of the international glycan structure repository, GlyTouCan. This trend has increased the need for a tool by which researchers in various fields can easily search glycan structures from integrated databases. We have developed a web-based glycan structure search tool, SugarDrawer, which supports the depiction of glycans including ambiguity, such as glycan fragments which contain underdetermined linkages, and a database search for glycans drawn on the canvas. This tool provides an easy editing feature for various glycan structures in just a few steps using template structures and pop-up windows which allow users to select specific information for each structure element. This tool has a unique feature for selecting possible attachment sites, which is defined in the Symbol Nomenclature for Glycans (SNFG). In addition, this tool can input and output glycans in WURCS and GlycoCT formats, which are the most commonly-used text formats for glycan structures.


Asunto(s)
Bases de Datos Factuales , Internet , Polisacáridos/genética , Programas Informáticos , Disciplinas de las Ciencias Biológicas , Humanos , Polisacáridos/química , Polisacáridos/clasificación , Polisacáridos/ultraestructura
15.
Molecules ; 26(23)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34885895

RESUMEN

Protein N-linked glycosylation is a post-translational modification that plays an important role in a myriad of biological processes. Computational prediction approaches serve as complementary methods for the characterization of glycosylation sites. Most of the existing predictors for N-linked glycosylation utilize the information that the glycosylation site occurs at the N-X-[S/T] sequon, where X is any amino acid except proline. Not all N-X-[S/T] sequons are glycosylated, thus the N-X-[S/T] sequon is a necessary but not sufficient determinant for protein glycosylation. In that regard, computational prediction of N-linked glycosylation sites confined to N-X-[S/T] sequons is an important problem. Here, we report DeepNGlyPred a deep learning-based approach that encodes the positive and negative sequences in the human proteome dataset (extracted from N-GlycositeAtlas) using sequence-based features (gapped-dipeptide), predicted structural features, and evolutionary information. DeepNGlyPred produces SN, SP, MCC, and ACC of 88.62%, 73.92%, 0.60, and 79.41%, respectively on N-GlyDE independent test set, which is better than the compared approaches. These results demonstrate that DeepNGlyPred is a robust computational technique to predict N-Linked glycosylation sites confined to N-X-[S/T] sequon. DeepNGlyPred will be a useful resource for the glycobiology community.


Asunto(s)
Proteoma/química , Aprendizaje Profundo , Glicosilación , Humanos , Modelos Biológicos , Redes Neurales de la Computación , Polisacáridos/análisis , Procesamiento Proteico-Postraduccional
16.
Bioinformatics ; 35(14): 2434-2440, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30535258

RESUMEN

MOTIVATION: Glycans are biomolecules that take an important role in the biological processes of living organisms. They form diverse, complicated structures such as branched and cyclic forms. Web3 Unique Representation of Carbohydrate Structures (WURCS) was proposed as a new linear notation for uniquely representing glycans during the GlyTouCan project. WURCS defines rules for complex glycan structures that other text formats did not support, and so it is possible to represent a wide variety glycans. However, WURCS uses a complicated nomenclature, so it is not human-readable. Therefore, we aimed to support the interpretation of WURCS by converting WURCS to the most basic and widely used format IUPAC. RESULTS: In this study, we developed GlycanFormatConverter and succeeded in converting WURCS to the three kinds of IUPAC formats (IUPAC-Extended, IUPAC-Condensed and IUPAC-Short). Furthermore, we have implemented functionality to import IUPAC-Extended, KEGG Chemical Function (KCF) and LinearCode formats and to export WURCS. We have thoroughly tested our GlycanFormatConverter and were able to show that it was possible to convert all the glycans registered in the GlyTouCan repository, with exceptions owing only to the limitations of the original format. The source code for this conversion tool has been released as an open source tool. AVAILABILITY AND IMPLEMENTATION: https://github.com/glycoinfo/GlycanFormatConverter.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Polisacáridos
17.
Beilstein J Org Chem ; 16: 2645-2662, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178355

RESUMEN

Systems glycobiology aims to provide models and analysis tools that account for the biosynthesis, regulation, and interactions with glycoconjugates. To facilitate these methods, there is a need for a clear glycan representation accessible to both computers and humans. Linear Code, a linearized and readily parsable glycan structure representation, is such a language. For this reason, Linear Code was adapted to represent reaction rules, but the syntax has drifted from its original description to accommodate new and originally unforeseen challenges. Here, we delineate the consensuses and inconsistencies that have arisen through this adaptation. We recommend options for a consensus-based extension of Linear Code that can be used for reaction rule specification going forward. Through this extension and specification of Linear Code to reaction rules, we aim to minimize inconsistent symbology thereby making glycan database queries easier. With a clear guide for generating reaction rule descriptions, glycan synthesis models will be more interoperable and reproducible thereby moving glycoinformatics closer to compliance with FAIR standards. Here, we present Linear Code for Reaction Rules (LiCoRR), version 1.0, an unambiguous representation for describing glycosylation reactions in both literature and code.

18.
Molecules ; 24(16)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443278

RESUMEN

For the effective discovery of the biological roles and disease-specific alterations concerning protein glycosylation in tissue samples, it is important to know beforehand the quantitative and qualitative variations of glycan structures expressed in various types of cells, sites, and tissues. To this end, we used laser microdissection-assisted lectin microarray (LMA) to establish a simple and reproducible method for high-throughput and in-depth glycomic profiling of formalin-fixed paraffin-embedded tissue sections. Using this "tissue glycome mapping" approach, we present 234 glycomic profiling data obtained from nine tissue sections (pancreas, heart, lung, thymus, gallbladder, stomach, small intestine, colon, and skin) of two 8-week-old male C57BL/6J mice. We provided this LMA-based dataset in the similar interface as that of GlycomeAtlas, a previously developed tool for mass spectrometry-based tissue glycomic profiling, allowing easy comparison of the two types of data. This online tool, called "LM-GlycomeAtlas", allows users to visualize the LMA-based tissue glycomic profiling data associated with the sample information as an atlas. Since the present dataset allows the comparison of glycomic profiles, it will facilitate the evaluation of site- and tissue-specific glycosylation patterns. Taking advantage of its extensibility, this tool will continue to be updated with the expansion of deposited data.


Asunto(s)
Glicómica , Lectinas/metabolismo , Análisis por Matrices de Proteínas , Programas Informáticos , Interfaz Usuario-Computador , Animales , Glicómica/métodos , Glicosilación , Masculino , Ratones , Microdisección , Especificidad de Órganos , Análisis por Matrices de Proteínas/métodos
20.
Bioinformatics ; 33(9): 1317-1323, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28093404

RESUMEN

Motivation: A glycan consists of monosaccharides linked by glycosidic bonds, has branches and forms complex molecular structures. Databases have been developed to store large amounts of glycan-binding experiments, including glycan arrays with glycan-binding proteins. However, there are few bioinformatics techniques to analyze large amounts of data for glycans because there are few tools that can handle the complexity of glycan structures. Thus, we have developed the MCAW (Multiple Carbohydrate Alignment with Weights) tool that can align multiple glycan structures, to aid in the understanding of their function as binding recognition molecules. Results: We have described in detail the first algorithm to perform multiple glycan alignments by modeling glycans as trees. To test our tool, we prepared several data sets, and as a result, we found that the glycan motif could be successfully aligned without any prior knowledge applied to the tool, and the known recognition binding sites of glycans could be aligned at a high rate amongst all our datasets tested. We thus claim that our tool is able to find meaningful glycan recognition and binding patterns using data obtained by glycan-binding experiments. The development and availability of an effective multiple glycan alignment tool opens possibilities for many other glycoinformatics analysis, making this work a big step towards furthering glycomics analysis. Availability and Implementation: http://www.rings.t.soka.ac.jp. Contact: kkiyoko@soka.ac.jp. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Glicómica/métodos , Polisacáridos/química , Bases de Datos Factuales , Estructura Molecular , Monosacáridos , Polisacáridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA