Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Pharmacol Sci ; 151(1): 37-45, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36522121

RESUMEN

Purine derivatives such as caffeine and uric acid have neuroprotective activities and are negatively correlated with the incidence of both Alzheimer's disease and Parkinson's disease. We have reported that an increment of intracellular glutathione (GSH) via cysteine uptake in neuronal cells is one of the mechanisms by which caffeine and uric acid confer neuroprotection. Here, we investigated whether caffeine metabolites such as paraxanthine, theophylline, theobromine, 1,7-dimethyluric acid and monomethylxanthines would increase cysteine uptake in mouse hippocampal slices. The metabolites were administered to hippocampal slices for 30 min at doses of 0, 10, or 100 µM, and then cysteine was added for 30 min. Paraxanthine, a major metabolite of caffeine, increased cysteine content in the slices, whereas the other metabolites did not. In vitro treatment with paraxanthine promoted cysteine uptake and increased GSH in HEK293 cells. The paraxanthine-induced cysteine uptake was inhibited by an excitatory amino-acid carrier-1 (EAAC1) inhibitor, and H2O2-induced cell damage was prevented by the paraxanthine treatment of SH-SY5Y cells. These results suggest that paraxanthine, an active metabolite of caffeine, acts to increase intracellular GSH levels via EAAC1 leading to neuroprotection.


Asunto(s)
Neuroblastoma , Teofilina , Humanos , Animales , Ratones , Teofilina/farmacología , Cafeína/farmacología , Cisteína , Ácido Úrico , Peróxido de Hidrógeno , Células HEK293 , Glutatión
2.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685879

RESUMEN

Numerous basic studies have reported on the neuroprotective properties of several purine derivatives such as caffeine and uric acid (UA). Epidemiological studies have also shown the inverse association of appropriate caffeine intake or serum urate levels with neurodegenerative diseases such as Alzheimer disease (AD) and Parkinson's disease (PD). The well-established neuroprotective mechanisms of caffeine and UA involve adenosine A2A receptor antagonism and antioxidant activity, respectively. Our recent study found that another purine derivative, paraxanthine, has neuroprotective effects similar to those of caffeine and UA. These purine derivatives can promote neuronal cysteine uptake through excitatory amino acid carrier protein 1 (EAAC1) to increase neuronal glutathione (GSH) levels in the brain. This review summarizes the GSH-mediated neuroprotective effects of purine derivatives. Considering the fact that GSH depletion is a manifestation in the brains of AD and PD patients, administration of purine derivatives may be a new therapeutic approach to prevent or delay the onset of these neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Glutatión , Neuroprotección , Fármacos Neuroprotectores , Enfermedad de Parkinson , Purinas , Humanos , Antagonistas del Receptor de Adenosina A2/química , Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/prevención & control , Encéfalo/metabolismo , Cisteína/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Glutatión/metabolismo , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/prevención & control , Purinas/química , Purinas/farmacología , Purinas/uso terapéutico , Receptor de Adenosina A2A , Teofilina/química , Teofilina/farmacología , Teofilina/uso terapéutico , Ácido Úrico/sangre , Cafeína/química , Cafeína/farmacología , Cafeína/uso terapéutico
3.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499400

RESUMEN

Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by parkinsonism, cerebellar impairment, and autonomic failure. Although the causes of MSA onset and progression remain uncertain, its pathogenesis may involve oxidative stress via the generation of excess reactive oxygen species and/or destruction of the antioxidant system. One of the most powerful antioxidants is glutathione, which plays essential roles as an antioxidant enzyme cofactor, cysteine-storage molecule, major redox buffer, and neuromodulator, in addition to being a key antioxidant in the central nervous system. Glutathione levels are known to be reduced in neurodegenerative diseases. In addition, genes regulating redox states have been shown to be post-transcriptionally modified by microRNA (miRNA), one of the most important types of non-coding RNA. miRNAs have been reported to be dysregulated in several diseases, including MSA. In this review, we focused on the relation between glutathione deficiency, miRNA dysregulation and oxidative stress and their close relation with MSA pathology.


Asunto(s)
MicroARNs , Atrofia de Múltiples Sistemas , Trastornos Parkinsonianos , Humanos , Atrofia de Múltiples Sistemas/genética , Atrofia de Múltiples Sistemas/patología , MicroARNs/genética , Glutatión , Cerebelo/metabolismo , Antioxidantes , alfa-Sinucleína/metabolismo
4.
Int J Mol Sci ; 22(9)2021 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-34065042

RESUMEN

Glutathione (GSH) is the most abundant non-protein thiol, and plays crucial roles in the antioxidant defense system and the maintenance of redox homeostasis in neurons. GSH depletion in the brain is a common finding in patients with neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, and can cause neurodegeneration prior to disease onset. Excitatory amino acid carrier 1 (EAAC1), a sodium-dependent glutamate/cysteine transporter that is selectively present in neurons, plays a central role in the regulation of neuronal GSH production. The expression of EAAC1 is posttranslationally controlled by the glutamate transporter-associated protein 3-18 (GTRAP3-18) or miR-96-5p in neurons. The regulatory mechanism of neuronal GSH production mediated by EAAC1 may be a new target in therapeutic strategies for these neurodegenerative diseases. This review describes the regulatory mechanism of neuronal GSH production and its potential therapeutic application in the treatment of neurodegenerative diseases.


Asunto(s)
Encéfalo/metabolismo , Glutatión/metabolismo , Animales , Antioxidantes/metabolismo , Biomarcadores , Encéfalo/efectos de los fármacos , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Transportador 3 de Aminoácidos Excitadores/genética , Transportador 3 de Aminoácidos Excitadores/metabolismo , Regulación de la Expresión Génica , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Glutatión/farmacología , Glutatión/uso terapéutico , Humanos , Redes y Vías Metabólicas , Microglía/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
5.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921907

RESUMEN

The establishment of antioxidative defense systems might have been mandatory for most living beings with aerobic metabolisms, because oxygen consumption produces adverse byproducts known as reactive oxygen species (ROS). The brain is especially vulnerable to the effect of ROS, since the brain has large amounts of unsaturated fatty acids, which are a target of lipid oxidation, as well as comparably high-energy consumption compared to other organs that results in ROS release from mitochondria. Thus, dysregulation of the synthesis and/or metabolism of antioxidants-particularly glutathione (GSH), which is one of the most important antioxidants in the human body-caused oxidative stress states that resulted in critical diseases, including neurodegenerative diseases in the brain. GSH plays crucial roles not only as an antioxidant but also as an enzyme cofactor, cysteine storage form, the major redox buffer, and a neuromodulator in the central nervous system. The levels of GSH are precisely regulated by uptake systems for GSH precursors as well as GSH biosynthesis and metabolism. The rapid advance of RNA sequencing technologies has contributed to the discovery of numerous non-coding RNAs with a wide range of functions. Recent lines of evidence show that several types of non-coding RNAs, including microRNA, long non-coding RNA and circular RNA, are abundantly expressed in the brain, and their activation or inhibition could contribute to neuroprotection through the regulation of GSH synthesis and/or metabolism. Interestingly, these non-coding RNAs play key roles in gene regulation and growing evidence indicates that non-coding RNAs interact with each other and are co-regulated. In this review, we focus on how the non-coding RNAs modulate the level of GSH and modify the oxidative stress states in the brain.


Asunto(s)
Glutatión/metabolismo , Fármacos Neuroprotectores/metabolismo , ARN no Traducido/metabolismo , Animales , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , ARN no Traducido/genética , Especies Reactivas de Oxígeno/metabolismo
6.
Int J Mol Sci ; 22(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069857

RESUMEN

The number of patients with neurodegenerative diseases (NDs) is increasing, along with the growing number of older adults. This escalation threatens to create a medical and social crisis. NDs include a large spectrum of heterogeneous and multifactorial pathologies, such as amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease and multiple system atrophy, and the formation of inclusion bodies resulting from protein misfolding and aggregation is a hallmark of these disorders. The proteinaceous components of the pathological inclusions include several RNA-binding proteins (RBPs), which play important roles in splicing, stability, transcription and translation. In addition, RBPs were shown to play a critical role in regulating miRNA biogenesis and metabolism. The dysfunction of both RBPs and miRNAs is often observed in several NDs. Thus, the data about the interplay among RBPs and miRNAs and their cooperation in brain functions would be important to know for better understanding NDs and the development of effective therapeutics. In this review, we focused on the connection between miRNAs, RBPs and neurodegenerative diseases.


Asunto(s)
MicroARNs/genética , Enfermedades Neurodegenerativas/genética , Proteínas de Unión al ARN/metabolismo , Enfermedad de Alzheimer/genética , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Humanos , Enfermedad de Huntington/genética , MicroARNs/biosíntesis , MicroARNs/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/fisiología
7.
FASEB J ; 32(1): 330-341, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28904020

RESUMEN

Pro-opiomelanocortin (POMC)-expressing neurons provide α-melanocyte-stimulating hormone (α-MSH), which stimulates melanocortin 4 receptor to induce hypophagia by AMPK inhibition in the hypothalamus. α-MSH is produced by POMC cleavage in secretory granules and released. However, it is not known yet whether any posttranscriptional regulatory mechanism of POMC signaling exists upstream of the secretory granules in neurons. Here we show that glutamate transporter-associated protein 3-18 (GTRAP3-18), an anchor protein that retains interacting proteins in the endoplasmic reticulum, is a critical regulator of food intake and body weight by interacting with POMC. GTRAP3-18-deficient mice showed hypophagia, lean bodies, and lower blood glucose, insulin, and leptin levels with increased serum and brain α-MSH levels, leading to AMPK inhibition. Intraperitoneal glucose tolerance tests revealed significantly decreased blood glucose levels and areas under the curve in GTRAP3-18-deficient mice compared to wild-type mice. An intracerebroventricular infusion of a selective melanocortin 4 receptor antagonist to GTRAP3-18-deficient mice significantly increased their food intake and body weight. A fluorescence resonance energy transfer study showed an interaction between GTRAP3-18 and POMC in vitro These findings suggest that activation of the melanocortin pathway by modulating GTRAP3-18/POMC interaction could be an alternative strategy for obesity and/or type 2 diabetes.-Aoyama, K., Bhadhprasit, W., Watabe, M., Wang, F., Matsumura, N., Nakaki, T. GTRAP3-18 regulates food intake and body weight by interacting with pro-opiomelanocortin.


Asunto(s)
Peso Corporal/fisiología , Proteínas Portadoras/fisiología , Ingestión de Alimentos/fisiología , Proopiomelanocortina/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo/metabolismo , Animales , Apetito , Glucemia/metabolismo , Encéfalo/metabolismo , Proteínas Portadoras/genética , Proteínas de Choque Térmico , Hipotálamo/metabolismo , Insulina/sangre , Leptina/sangre , Masculino , Proteínas de Transporte de Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Pérdida de Peso , alfa-MSH/metabolismo
8.
Molecules ; 20(5): 8742-58, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-26007177

RESUMEN

Reactive oxygen species (ROS) are by-products of the cellular metabolism of oxygen consumption, produced mainly in the mitochondria. ROS are known to be highly reactive ions or free radicals containing oxygen that impair redox homeostasis and cellular functions, leading to cell death. Under physiological conditions, a variety of antioxidant systems scavenge ROS to maintain the intracellular redox homeostasis and normal cellular functions. This review focuses on the antioxidant system's roles in maintaining redox homeostasis. Especially, glutathione (GSH) is the most important thiol-containing molecule, as it functions as a redox buffer, antioxidant, and enzyme cofactor against oxidative stress. In the brain, dysfunction of GSH synthesis leading to GSH depletion exacerbates oxidative stress, which is linked to a pathogenesis of aging-related neurodegenerative diseases. Excitatory amino acid carrier 1 (EAAC1) plays a pivotal role in neuronal GSH synthesis. The regulatory mechanism of EAAC1 is also discussed.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/metabolismo , Glutatión/biosíntesis , Enfermedades Neurodegenerativas/patología , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/química , Encéfalo/metabolismo , Glutatión/química , Humanos , Mitocondrias/metabolismo , Fármacos Neuroprotectores , Oxidación-Reducción , Estrés Oxidativo
9.
Amino Acids ; 45(1): 133-42, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23462929

RESUMEN

Extracellular glutamate should be maintained at low levels to conserve optimal neurotransmission and prevent glutamate neurotoxicity in the brain. Excitatory amino acid transporters (EAATs) play a pivotal role in removing extracellular glutamate in the central nervous system (CNS). Excitatory amino acid carrier 1 (EAAC1) is a high-affinity Na⁺-dependent neuronal EAAT that is ubiquitously expressed in the brain. However, most glutamate released in the synapses is cleared by glial EAATs, but not by EAAC1 in vivo. In the CNS, EAAC1 is widely distributed in somata and dendrites but not in synaptic terminals. The contribution of EAAC1 to the control of extracellular glutamate levels seems to be negligible in the brain. However, EAAC1 can transport not only extracellular glutamate but also cysteine into the neurons. Cysteine is an important substrate for glutathione (GSH) synthesis in the brain. GSH has a variety of neuroprotective functions, while its depletion induces neurodegeneration. Therefore, EAAC1 might exert a critical role for neuroprotection in neuronal GSH metabolism rather than glutamatergic neurotransmission, while EAAC1 dysfunction would cause neurodegeneration. Despite the potential importance of EAAC1 in the brain, previous studies have mainly focused on the glutamate neurotoxicity induced by glial EAAT dysfunction. In recent years, however, several studies have revealed regulatory mechanisms of EAAC1 functions in the brain. This review will summarize the latest information on the EAAC1-regulated neuroprotective functions in the CNS.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Glutatión/metabolismo , Fármacos Neuroprotectores/metabolismo , Transmisión Sináptica , Animales , Antioxidantes/metabolismo , Sistema Nervioso Central/metabolismo , Cisteína/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Humanos , Ratones
10.
Int J Mol Sci ; 14(10): 21021-44, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24145751

RESUMEN

Glutathione (GSH) was discovered in yeast cells in 1888. Studies of GSH in mammalian cells before the 1980s focused exclusively on its function for the detoxication of xenobiotics or for drug metabolism in the liver, in which GSH is present at its highest concentration in the body. Increasing evidence has demonstrated other important roles of GSH in the brain, not only for the detoxication of xenobiotics but also for antioxidant defense and the regulation of intracellular redox homeostasis. GSH also regulates cell signaling, protein function, gene expression, and cell differentiation/proliferation in the brain. Clinically, inborn errors in GSH-related enzymes are very rare, but disorders of GSH metabolism are common in major neurodegenerative diseases showing GSH depletion and increased levels of oxidative stress in the brain. GSH depletion would precipitate oxidative damage in the brain, leading to neurodegenerative diseases. This review focuses on the significance of GSH function, the synthesis of GSH and its metabolism, and clinical disorders of GSH metabolism. A potential approach to increase brain GSH levels against neurodegeneration is also discussed.


Asunto(s)
Glutatión/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Antioxidantes/metabolismo , Humanos , Oxidación-Reducción , Estrés Oxidativo/fisiología
11.
Neurobiol Dis ; 45(3): 973-82, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22210510

RESUMEN

Glutathione (GSH) is an important neuroprotective molecule in the brain. The strategy to increase neuronal GSH level is a promising approach to the treatment of neurodegenerative diseases. However, the regulatory mechanism by which neuron-specific GSH synthesis is facilitated remains elusive. Glutamate transporter-associated protein 3-18 (GTRAP3-18) is an endoplasmic reticulum protein interacting with excitatory amino acid carrier 1 (EAAC1), which is a neuronal glutamate/cysteine transporter. To investigate the potential regulatory mechanism to increase neuronal GSH level in vivo, we generated GTRAP3-18-deficient (GTRAP3-18(-/-)) mice using a gene-targeting approach. Disruption of the GTRAP3-18 gene resulted in increased EAAC1 expression in the plasma membrane, increased neuronal GSH content and neuroprotection against oxidative stress. In addition, GTRAP3-18(-/-) mice performed better in motor/spatial learning and memory tests than wild-type mice. Therefore, the suppression of GTRAP3-18 increases neuronal resistance to oxidative stress by increasing GSH content and also facilitates cognitive function. The present results may provide a molecular basis for the development of treatments for neurodegenerative diseases.


Asunto(s)
Encéfalo/citología , Proteínas Portadoras/genética , Glutatión/metabolismo , Neuronas/metabolismo , Análisis de Varianza , Animales , Proteínas de Unión al Calcio/metabolismo , Cisteína/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Proteína Ácida Fibrilar de la Glía/metabolismo , Ácido Glutámico/metabolismo , Glicina/metabolismo , Proteínas de Choque Térmico , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Técnicas In Vitro , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Proteínas de Transporte de Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Molsidomina/análogos & derivados , Molsidomina/farmacología , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Neuronas/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Fenotipo , Fosfopiruvato Hidratasa/metabolismo , Factores de Tiempo , Ácido gamma-Aminobutírico/metabolismo
12.
Amino Acids ; 42(1): 163-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21373771

RESUMEN

Glutathione (GSH) plays essential roles in different processes such as antioxidant defenses, cell signaling, cell proliferation, and apoptosis in the central nervous system. GSH is a tripeptide composed of glutamate, cysteine, and glycine. The concentration of cysteine in neurons is much lower than that of glutamate or glycine, so that cysteine is the rate-limiting substrate for neuronal GSH synthesis. Most neuronal cysteine uptake is mediated through the neuronal sodium-dependent glutamate transporter, known as excitatory amino acid carrier 1 (EAAC1). Glutamate transporters are vulnerable to oxidative stress and EAAC1 dysfunction impairs neuronal GSH synthesis by reducing cysteine uptake. This may start a vicious circle leading to neurodegeneration. Intracellular signaling molecules functionally regulate EAAC1. Glutamate transporter-associated protein 3-18 (GTRAP3-18) activation down-regulates EAAC1 function. Here, we focused on the interaction between EAAC1 and GTRAP3-18 at the plasma membrane to investigate their effects on neuronal GSH synthesis. Increased level of GTRAP3-18 protein induced a decrease in GSH level and, thereby, increased the vulnerability to oxidative stress, while decreased level of GTRAP3-18 protein induced an increase in GSH level in vitro. We also confirmed these results in vivo. Our studies demonstrate that GTRAP3-18 regulates neuronal GSH level by controlling the EAAC1-mediated uptake of cysteine.


Asunto(s)
Proteínas Portadoras/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Glutatión/biosíntesis , Neuronas/metabolismo , Animales , Glutatión/metabolismo , Humanos
13.
Int J Mol Sci ; 13(9): 12017-12035, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23109897

RESUMEN

Glutathione (GSH) is a tripeptide consisting of glutamate, cysteine, and glycine; it has a variety of functions in the central nervous system. Brain GSH depletion is considered a preclinical sign in age-related neurodegenerative diseases, and it promotes the subsequent processes toward neurotoxicity. A neuroprotective mechanism accomplished by increasing GSH synthesis could be a promising approach in the treatment of neurodegenerative diseases. In neurons, cysteine is the rate-limiting substrate for GSH synthesis. Excitatory amino acid carrier 1 (EAAC1) is a neuronal cysteine/glutamate transporter in the brain. EAAC1 translocation to the plasma membrane promotes cysteine uptake, leading to GSH synthesis, while being negatively regulated by glutamate transport associated protein 3-18 (GTRAP3-18). Our recent studies have suggested GTRAP3-18 as an inhibitory factor for neuronal GSH synthesis. Inhibiting GTRAP3-18 function is an endogenous mechanism to increase neuron-specific GSH synthesis in the brain. This review gives an overview of EAAC1-mediated GSH synthesis, and its regulatory mechanisms by GTRAP3-18 in the brain, and a potential approach against neurodegeneration.


Asunto(s)
Encéfalo/metabolismo , Glutatión/biosíntesis , Proteínas de Choque Térmico/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuronas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Animales , Encéfalo/patología , Transportador 3 de Aminoácidos Excitadores/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Transporte de Membrana , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/patología
14.
Surg Today ; 41(4): 579-84, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21431499

RESUMEN

We report a case of undifferentiated carcinoma of the common bile duct with intraductal tumor thrombi. A 73-year-old man presented with general malaise. Abdominal computed tomography and magnetic resonance imaging revealed a mass in the distal common bile duct, accompanied by dilatation of the intra- and extrahepatic bile ducts. The patient underwent pancreaticoduodenectomy with regional lymphadenectomy. Gross examination revealed that the distal common bile duct was obstructed by an elastic hard mass, 3.2 × 2.6 cm, accompanied by intraductal tumor thrombi. Microscopically, the nodule was well defined and composed of atypical large tumor cells with bizarre nuclei and little cytoplasm. Immunohistochemically, the tumor cells were diffusely positive for cytokeratin-7 and CAM5.2, but negative for CD56, chromogranin A, and synaptophysin. Thus, a histological diagnosis of undifferentiated carcinoma of the common bile duct was made. The patient recovered uneventfully and has remained free of any signs of recurrence for 18 months since the operation. Undifferentiated carcinomas of the extrahepatic bile duct can be detected early, with the chance of a good prognosis; however, because their biologic growth behavior is still considered aggressive, careful observation after surgery and the initiation of multidisciplinary treatment against recurrence are necessary.


Asunto(s)
Carcinoma/patología , Carcinoma/cirugía , Neoplasias del Conducto Colédoco/patología , Neoplasias del Conducto Colédoco/cirugía , Trombosis/patología , Trombosis/cirugía , Anciano , Carcinoma/diagnóstico , Neoplasias del Conducto Colédoco/diagnóstico , Diagnóstico Diferencial , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Pancreaticoduodenectomía , Trombosis/diagnóstico , Tomografía Computarizada por Rayos X
15.
Nihon Yakurigaku Zasshi ; 156(1): 26-30, 2021.
Artículo en Japonés | MEDLINE | ID: mdl-33390476

RESUMEN

Glutathione (GSH) is a tripeptide consisting of glutamate, cysteine, and glycine that acts as an important neuroprotective molecule in the central nervous system. In neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, GSH levels in the brain would be decreased before the onset, and GSH dysregulation is considered to be involved in the development of these neurodegenerative diseases. Cysteine uptake into neurons is the rate-limiting step for GSH synthesis. Excitatory amino acid carrier 1 (EAAC1), which is a glutamate/cysteine cotransporter, is responsible for the neuronal cysteine uptake, and EAAC1 dysfunction reduces GSH levels in the brain and has a significant influence on the process of neurodegeneration. Since miR-96-5p, which is one of microRNAs, suppresses EAAC1 expression, it is conceivable that miR-96-5p inhibitor suppresses the onset or slows the progression of neurodegenerative diseases by increasing EAAC1 levels leading to promoting neuronal GSH production.


Asunto(s)
Glutatión , Enfermedades Neurodegenerativas , Cisteína , Transportador 3 de Aminoácidos Excitadores , Glutatión/metabolismo , Humanos , Neuronas/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-33347385

RESUMEN

Toll-like receptors (TLRs) sense microbial infection through recognition of pathogen-associated molecular patterns. For example, TLR4 responds to the lipopolysaccharide of gram-negative bacteria, whereas TLR2 recognizes a broad range of microbial ligands. Both receptors are, therefore, compelling targets for treating sepsis. Here, we developed a TLR2xTLR4 tetravalent bispecific antibody designated ICU-1, which inhibits both receptors. The inhibitory activity of ICU-1 was comparable to that of the parental antibodies in neutralization assays using a human monocyte cell line. Moreover, ICU-1 completely blocked stimulation of human peripheral blood mononuclear cells by clinically relevant bacterial species. These findings provide convincing evidence that ICU-1 offers a novel approach for treating bacterial sepsis.


Asunto(s)
Sepsis , Receptor Toll-Like 2 , Anticuerpos Monoclonales , Humanos , Leucocitos Mononucleares , Lipopolisacáridos , Sepsis/tratamiento farmacológico , Receptor Toll-Like 2/genética , Receptor Toll-Like 4
17.
Commun Biol ; 4(1): 182, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568779

RESUMEN

Glutathione (GSH) is an important antioxidant that plays a critical role in neuroprotection. GSH depletion in neurons induces oxidative stress and thereby promotes neuronal damage, which in turn is regarded as a hallmark of the early stage of neurodegenerative diseases. The neuronal GSH level is mainly regulated by cysteine transporter EAAC1 and its inhibitor, GTRAP3-18. In this study, we found that the GTRAP3-18 level was increased by up-regulation of the microRNA miR-96-5p, which was found to decrease EAAC1 levels in our previous study. Since the 3'-UTR region of GTRAP3-18 lacks the consensus sequence for miR-96-5p, an unidentified protein should be responsible for the intermediate regulation of GTRAP3-18 expression by miR-96-5p. Here, we discovered that RNA-binding protein NOVA1 functions as an intermediate protein for GTRAP3-18 expression via miR-96-5p. Moreover, we show that intra-arterial injection of a miR-96-5p-inhibiting nucleic acid to living mice by a drug delivery system using microbubbles and ultrasound decreased the level of GTRAP3-18 via NOVA1 and increased the levels of EAAC1 and GSH in the dentate gyrus of the hippocampus. These findings suggest that the delivery of a miR-96-5p inhibitor to the brain would efficiently increase the neuroprotective activity by increasing GSH levels via EAAC1, GTRAP3-18 and NOVA1.


Asunto(s)
Giro Dentado/efectos de los fármacos , Glutatión/metabolismo , MicroARNs/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular Tumoral , Giro Dentado/metabolismo , Transportador 3 de Aminoácidos Excitadores/genética , Transportador 3 de Aminoácidos Excitadores/metabolismo , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Inyecciones Intraarteriales , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Microburbujas , Antígeno Ventral Neuro-Oncológico , Fármacos Neuroprotectores/administración & dosificación , Proteínas de Unión al ARN/genética , Ultrasonido , Regulación hacia Arriba
18.
J Food Prot ; 73(2): 344-52, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20132681

RESUMEN

Between 2004 and 2007 we examined foods from Japanese retail shops for contamination with ochratoxin A (OTA) and fumonisins B(1), B(2), and B(3). A total of 1,358 samples of 27 different products were examined for OTA, and 831 samples of 16 different products were examined for fumonisins. The limits of quantification ranged from 0.01 to 0.5 microg/kg for OTA and 2 to 10 microg/kg for the fumonisins. OTA was detected in amounts higher than limits of quantification in wheat flour, pasta, oatmeal, rye, buckwheat flour and dried buckwheat noodles, raisins, wine, beer, coffee beans and coffee products, chocolate, cocoa, and coriander. OTA was found in more than 90% of the samples of instant coffee and cocoa, and the highest concentration of OTA, 12.5 microg/kg, was detected in raisins. The concentration of OTA in oatmeal, rye, raisins, wine, and roasted coffee beans varied remarkably from year to year. Fumonisins were detected in frozen and canned corn, popcorn grain, corn grits, cornflakes, corn soups, corn snacks, beer, soybeans, millet, and asparagus. The highest concentrations of fumonisins B(1), B(2), and B(3) were detected in corn grits (1,670, 597, and 281 microg/kg, respectively). All of the samples of corn grits were contaminated with fumonisins, and more than 80% of the samples of popcorn grain and corn snacks contained fumonisins. OTA and fumonisins were detected in several food products in Japan; however, although Japan has not set regulatory levels for these mycotoxins, their concentrations were relatively low.


Asunto(s)
Contaminación de Alimentos/análisis , Fumonisinas/análisis , Micotoxinas/análisis , Ocratoxinas/análisis , Cerveza/análisis , Cacao/química , Cromatografía Líquida de Alta Presión/métodos , Seguridad de Productos para el Consumidor , Grano Comestible/química , Análisis de los Alimentos , Humanos , Japón , Medición de Riesgo
19.
Hepatogastroenterology ; 57(99-100): 519-23, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20698220

RESUMEN

BACKGROUND/AIMS: To investigate the factors contributing to failure of initial hemostasis in patients undergoing endoscopic hemostasis. METHODOLOGY: A total of 316 patients underwent endoscopic hemostasis for bleeding peptic ulcers in a period of 4 years. RESULTS: For hemostatic procedures, application of hemostatic clips, band ligation, injection of hypertonic saline epinephrine solution, soft coagulation, and argon plasma coagulation were employed either singly or in combination. Patients were divided into the following 2 groups for multivariate analysis: durable hemostasis (n = 268) and failed initial (incomplete) hemostasis (n = 48). Hemodialysis was a risk factor of incomplete hemostasis (Odds Ratio [OR] = 2.306, 95% confidence interval [CI] = 1.033-5.147; p = 0.041). Compared with the duodenal 2nd portion, the following bleeding sites had significantly lower risk of incomplete hemostasis (approximately 5 times less likely): The duodenal bulb (D), OR = 0.215, 95% CI = 0.058-0.797 (p = 0.022); the L region, OR = 0.207, 95% CI = 0.046-0.919 (p = 0.038); the M region, OR = 0.132, 95% CI = 0.036-0.482 (p = 0.002); and the U region, OR = 0.164, 95% CI = 0.041-0.649 (p = 0.01). CONCLUSIONn: Hemodialysis and a bleeding site located in the duodenal second portion were the factors strongly associated with incomplete hemostasis in bleeding gastroduodenal ulcers.


Asunto(s)
Hemostasis Endoscópica/métodos , Úlcera Péptica Hemorrágica/terapia , Adulto , Anciano , Anciano de 80 o más Años , Aspirina/efectos adversos , Femenino , Hemostasis Endoscópica/efectos adversos , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Factores de Riesgo
20.
Nat Neurosci ; 9(1): 119-26, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16311588

RESUMEN

Uptake of the neurotransmitter glutamate is effected primarily by transporters expressed on astrocytes, and downregulation of these transporters leads to seizures and neuronal death. Neurons also express a glutamate transporter, termed excitatory amino acid carrier-1 (EAAC1), but the physiological function of this transporter remains uncertain. Here we report that genetically EAAC1-null (Slc1a1(-/-)) mice have reduced neuronal glutathione levels and, with aging, develop brain atrophy and behavioral changes. EAAC1 can also rapidly transport cysteine, an obligate precursor for neuronal glutathione synthesis. Neurons in the hippocampal slices of EAAC1(-/-) mice were found to have reduced glutathione content, increased oxidant levels and increased susceptibility to oxidant injury. These changes were reversed by treating the EAAC1(-/-) mice with N-acetylcysteine, a membrane-permeable cysteine precursor. These findings suggest that EAAC1 is the primary route for neuronal cysteine uptake and that EAAC1 deficiency thereby leads to impaired neuronal glutathione metabolism, oxidative stress and age-dependent neurodegeneration.


Asunto(s)
Envejecimiento/patología , Transportador 3 de Aminoácidos Excitadores/genética , Glutatión/deficiencia , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Neuronas/metabolismo , Acetilcisteína/farmacología , Animales , Conducta Animal/efectos de los fármacos , Bicuculina/farmacología , Western Blotting , Encéfalo/patología , Cisteína/metabolismo , Antagonistas del GABA/farmacología , Genotipo , Glutatión/metabolismo , Inmunohistoquímica , Ratones , Ratones Noqueados , Oxidantes/toxicidad , Estrés Oxidativo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA