RESUMEN
There is a need to generate improved crop varieties adapted to the ongoing changes in the climate. We studied durum wheat canopy and central metabolism of six different photosynthetic organs in two yield-contrasting varieties. The aim was to understand the mechanisms associated with the water stress response and yield performance. Water stress strongly reduced grain yield, plant biomass, and leaf photosynthesis, and down-regulated C/N-metabolism genes and key protein levels, which occurred mainly in leaf blades. By contrast, higher yield was associated with high ear dry weight and lower biomass and ears per area, highlighting the advantage of reduced tillering and the consequent improvement in sink strength, which promoted C/N metabolism at the whole plant level. An improved C metabolism in blades and ear bracts and N assimilation in all photosynthetic organs facilitated C/N remobilization to the grain and promoted yield. Therefore, we propose that further yield gains in Mediterranean conditions could be achieved by considering the source-sink dynamics and the contribution of non-foliar organs, and particularly N assimilation and remobilization during the late growth stages. We highlight the power of linking phenotyping with plant metabolism to identify novel traits at the whole plant level to support breeding programmes.
Asunto(s)
Grano Comestible , Nitrógeno , Fotosíntesis , Triticum , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Triticum/fisiología , Nitrógeno/metabolismo , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Agua/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , BiomasaRESUMEN
Durum wheat is an important cereal that is widely grown in the Mediterranean basin. In addition to high yield, grain quality traits are of high importance for farmers. The strong influence of climatic conditions makes the improvement of grain quality traits, like protein content, vitreousness, and test weight, a challenging task. Evaluation of quality traits post-harvest is time- and labor-intensive and requires expensive equipment, such as near-infrared spectroscopes or hyperspectral imagers. Predicting not only yield but also important quality traits in the field before harvest is of high value for breeders aiming to optimize resource allocation. Implementation of efficient approaches for trait prediction, such as the use of high-resolution spectral data acquired by a multispectral camera mounted on unmanned aerial vehicles (UAVs), needs to be explored. In this study, we have acquired multispectral image data with an 11-band multispectral camera mounted on a UAV and analyzed the data with machine learning (ML) models to predict grain yield and important quality traits in breeding micro-plots. Combining 11-band multispectral data for 34 cultivars and 16 environments allowed to develop ML models with good prediction capability. Applying the trained models to test sets explained a considerable degree of phenotypic variance with good accuracy showing r squared values of 0.84, 0.69, 0.64, and 0.61 and normalized root mean squared errors of 0.17, 0.07, 0.14, and 0.03 for grain yield, protein content, vitreousness, and test weight, respectively.
Asunto(s)
Grano Comestible , Triticum , Fenotipo , FitomejoramientoRESUMEN
MAIN CONCLUSION: The pool of carbon- and nitrogen-rich metabolites is quantitatively relevant in non-foliar photosynthetic organs during grain filling, which have a better response to water limitation than flag leaves. The response of durum wheat to contrasting water regimes has been extensively studied at leaf and agronomic level in previous studies, but the water stress effects on source-sink dynamics, particularly non-foliar photosynthetic organs, is more limited. Our study aims to investigate the response of different photosynthetic organs to water stress and to quantify the pool of carbon and nitrogen metabolites available for grain filling. Five durum wheat varieties were grown in field trials in the Spanish region of Castile and León under irrigated and rainfed conditions. Water stress led to a significant decrease in yield, biomass, and carbon and nitrogen assimilation, improved water use efficiency, and modified grain quality traits in the five varieties. The pool of carbon (glucose, glucose-6-phosphate, fructose, sucrose, starch, and malate) and nitrogen (glutamate, amino acids, proteins and chlorophylls) metabolites in leaf blades and sheaths, peduncles, awns, glumes and lemmas were also analysed. The results showed that the metabolism of the blades and peduncles was the most susceptible to water stress, while ear metabolism showed higher stability, particularly at mid-grain filling. Interestingly, the total metabolite content per organ highlighted that a large source of nutrients, which may be directly involved in grain filling, are found outside the blades, with the peduncles being quantitatively the most relevant. We conclude that yield improvements in our Mediterranean agro-ecosystem are highly linked to the success of shoots in producing ears and a higher number of grains, while grain filling is highly dependent on the capacity of non-foliar organs to fix CO2 and N. The ear organs show higher stress resilience than other organs, which deserves our attention in future breeding programmes.
Asunto(s)
Deshidratación , Triticum , Triticum/fisiología , Deshidratación/metabolismo , Ecosistema , Fitomejoramiento , Carbono/metabolismo , Hojas de la Planta/metabolismo , Grano Comestible/metabolismo , Nitrógeno/metabolismoRESUMEN
The effects of leaf dorsoventrality and its interaction with environmentally induced changes in the leaf spectral response are still poorly understood, particularly for isobilateral leaves. We investigated the spectral performance of 24 genotypes of field-grown durum wheat at two locations under both rainfed and irrigated conditions. Flag leaf reflectance spectra in the VIS-NIR-SWIR (visible-near-infrared-short-wave infrared) regions were recorded in the adaxial and abaxial leaf sides and at the canopy level, while traits providing information on water status and grain yield were evaluated. Moreover, leaf anatomical parameters were measured in a subset of five genotypes. The spectral traits studied were more affected by the leaf side than by the water regime. Leaf dorsoventral differences suggested higher accessory pigment content in the abaxial leaf side, while water regime differences were related to increased chlorophyll, nitrogen, and water contents in the leaves in the irrigated treatment. These variations were associated with anatomical changes. Additionally, leaf dorsoventral differences were less in the rainfed treatment, suggesting the existence of leaf-side-specific responses at the anatomical and biochemical level. Finally, the accuracy in yield prediction was enhanced when abaxial leaf spectra were employed. We concluded that the importance of dorsoventrality in spectral traits is paramount, even in isobilateral leaves.
Asunto(s)
Clorofila/metabolismo , Triticum/fisiología , Agua/metabolismo , Hojas de la Planta/fisiologíaRESUMEN
In the dynamic landscape of agriculture and food science, incorporating emergent crops appears as a pioneering solution for diversifying agriculture, unlocking possibilities for sustainable cultivation and nutritional bolstering food security, and creating economic prospects amid evolving environmental and market conditions with positive impacts on human health. This review explores the potential of utilizing emergent crops in Mediterranean environments under current climate scenarios, emphasizing the manifold benefits of agricultural and food system diversification and assessing the impact of environmental factors on their quality and consumer health. Through a deep exploration of the resilience, nutritional value, and health impacts of neglected and underutilized species (NUS) such as quinoa, amaranth, chia, moringa, buckwheat, millet, teff, hemp, or desert truffles, their capacity to thrive in the changing Mediterranean climate is highlighted, offering novel opportunities for agriculture and functional food development. By analysing how promoting agricultural diversification can enhance food system adaptability to evolving environmental conditions, fostering sustainability and resilience, we discuss recent findings that underscore the main benefits and limitations of these crops from agricultural, food science, and health perspectives, all crucial for responsible and sustainable adoption. Thus, by using a sustainable and holistic approach, this revision analyses how the integration of NUS crops into Mediterranean agrifood systems can enhance agriculture resilience and food quality addressing environmental, nutritional, biomedical, economic, and cultural dimensions, thereby mitigating the risks associated with monoculture practices and bolstering local economies and livelihoods under new climate scenarios.
RESUMEN
An acceleration of the genetic advances of durum wheat, as a major crop for the Mediterranean region, is required, but phenotyping still represents a bottleneck for breeding. This study aims to define durum wheat ideotypes under Mediterranean conditions by selecting the most suitable phenotypic remote sensing traits among different ones informing on characteristics related with leaf pigments/photosynthetic status, crop water status, and crop growth/green biomass. A set of 24 post-green revolution durum wheat cultivars were assessed in a wide set of 19 environments, accounted as the specific combinations of a range of latitudes in Spain, under different management conditions (water regimes and planting dates), through 3 consecutive years. Thus, red-green-blue and multispectral derived vegetation indices and canopy temperature were evaluated at anthesis and grain filling. The potential of the assessed remote sensing parameters alone and all combined as grain yield (GY) predictors was evaluated through random forest regression models performed for each environment and phenological stage. Biomass and plot greenness indicators consistently proved to be reliable GY predictors in all of the environments tested for both phenological stages. For the lowest-yielding environment, the contribution of water status measurements was higher during anthesis, whereas, for the highest-yielding environments, better predictions were reported during grain filling. Remote sensing traits measured during the grain filling and informing on pigment content and photosynthetic capacity were highlighted under the environments with warmer conditions, as the late-planting treatments. Overall, canopy greenness indicators were reported as the highest correlated traits for most of the environments and regardless of the phenological moment assessed. The addition of carbon isotope composition of mature kernels was attempted to increase the accuracies, but only a few were slightly benefited, as differences in water status among cultivars were already accounted by the measurement of canopy temperature.
RESUMEN
The integration of high-throughput phenotyping and metabolic approaches is a suitable strategy to study the genotype-by-environment interaction and identify novel traits for crop improvement from canopy to an organ level. Our aims were to study the phenotypic and metabolic traits that are related to grain yield and quality at canopy and organ levels, with a special focus on source-sink coordination under contrasting N supplies. Four modern durum wheat varieties with contrasting grain yield were grown in field conditions under two N fertilization levels in north-eastern Spain. We evaluated canopy vegetation indices taken throughout the growing season, physiological and metabolic traits in different photosynthetic organs (flag leaf blade, sheath, peduncle, awn, glume, and lemma) at anthesis and mid-grain filling stages, and agronomic and grain quality traits at harvest. Low N supply triggered an imbalance of C and N coordination at the whole plant level, leading to a reduction of grain yield and nutrient composition. The activities of key enzymes in C and N metabolism as well as the levels of photoassimilates showed that each organ plays an important role during grain filling, some with a higher photosynthetic capacity, others for nutrient storage for later stages of grain filling, or N assimilation and recycling. Interestingly, the enzyme activities and sucrose content of the ear organs were positively associated with grain yield and quality, suggesting, together with the regression models using isotope signatures, the potential contribution of these organs during grain filling. This study highlights the use of holistic approaches to the identification of novel targets to improve grain yield and quality in C3 cereals and the key role of non-foliar organs at late-growth stages.
RESUMEN
BACKGROUND: There is considerable interest in recovering landraces as genetic resources and as raw materials in ecological production. Low-hydration bread, whose dough is submitted to a sheeting roll process, is commonly prepared in Spain and other countries. The aim of this study was to assess the adequacy of some landraces, compared with commercial cultivars and flours, for making this type of bread. Eight Spanish landraces, four wheat cultivars developed during the green revolution and three commercial flours were chosen, their alveographic and kneading behaviours were analysed and the characteristics of the resulting breads were determined. RESULTS: The best correlations were obtained in breads with improver. Flours with extreme alveographic behaviour differed markedly from the rest. When these flours were excluded from the analysis, the parameters best correlated with bread quality (when using improver) were strength, tenacity and development time. A significant correlation between flour colour, a genetic factor, and crumb colour was found. This correlation was higher in breads without improver. CONCLUSION When flours with extreme characteristics were removed, the protein quality characteristics of flours defined the quality characteristics of low-hydration breads.
Asunto(s)
Pan/análisis , Productos Agrícolas/química , Harina/análisis , Triticum/química , Agua/análisis , Fenómenos Químicos , Color , Productos Agrícolas/genética , Aditivos Alimentarios/química , Manipulación de Alimentos , Genes de Plantas , España , Triticum/genéticaRESUMEN
Understanding the interaction between genotype performance and the target environment is the key to improving genetic gain, particularly in the context of climate change. Wheat production is seriously compromised in agricultural regions affected by water and heat stress, such as the Mediterranean basin. Moreover, wheat production may be also limited by the nitrogen availability in the soil. We have sought to dissect the agronomic and physiological traits related to the performance of 12 high-yield European bread wheat varieties under Mediterranean rainfed conditions and different levels of N fertilization during two contrasting crop seasons. Grain yield was more than two times higher in the first season than the second season and was associated with much greater rainfall and lower temperatures. However, the nitrogen effect was rather minor. Genotypic effects existed for the two seasons. While several of the varieties from central/northern Europe yielded more than those from southern Europe during the optimal season, the opposite trend occurred in the dry season. The varieties from central/northern Europe were associated with delayed phenology and a longer crop cycle, while the varieties from southern Europe were characterized by a shorter crop cycle but comparatively higher duration of the reproductive period, associated with an earlier beginning of stem elongation and a greater number of ears per area. However, some of the cultivars from northern Europe maintained a relatively high yield capacity in both seasons. Thus, KWS Siskin from the UK exhibited intermediate phenology, resulting in a relatively long reproductive period, together with a high green area throughout the crop cycle.
RESUMEN
Chenopodium quinoa Willd (quinoa) has acquired an increased agronomical and nutritional relevance due to the capacity of adaptation to different environments and the exceptional nutritional properties of their seeds. These include high mineral and protein contents, a balanced amino acid composition, an elevated antioxidant capacity related to the high phenol content, and the absence of gluten. Although it is known that these properties can be determined by the environment, limited efforts have been made to determine the exact changes occurring at a nutritional level under changing environmental conditions in this crop. To shed light on this, this study aimed at characterizing variations in nutritional-related parameters associated with the year of cultivation and different genotypes. Various nutritional and physiological traits were analyzed in seeds of different quinoa cultivars grown in the field during three consecutive years. We found differences among cultivars for most of the nutritional parameters analyzed. It was observed that the year of cultivation was a determinant factor in every parameter studied, being 2018 the year with lower yields, germination rates, and antioxidant capacity, but higher seed weights and seed protein contents. Overall, this work will greatly contribute to increase our knowledge of the impact of the environment and genotype on the nutritional properties of quinoa seeds, especially in areas that share climatic conditions to Southern Europe.
RESUMEN
Knowledge of the agronomic and physiological traits associated with genetic gains in yield is essential to improve understanding of yield-limiting factors and to inform future breeding strategies. The aim of this paper is to dissect the agronomic and physiological traits related to genetic gain and to propose an ideotype with high yield that is best adapted to Spanish Mediterranean environments. Six semi-dwarf (i.e. modern) durum wheat genotypes were grown in a wide range of growing conditions in Spain during two successive years. Diverse agronomic, physiological and leaf morphological traits were evaluated. Kernels spike-1 was the yield component most affected by the genetic gain. While no interaction between genotype and growing conditions existed for grain yield, the more productive genotypes were characterized by a plant height of around 85â¯cm, small erect flag leaves, more open stomata, a better balance between N sources and N sinks and a higher capacity to re-fix CO2 respired by the grain. Moreover, in general the non-laminar parts of the plants play a key role in providing assimilates during grain filling. The high heritability of most of the studied parameters allows their consideration as traits for phenotyping durum wheat better adapted to a wide range of Mediterranean conditions.
Asunto(s)
Fenotipo , Fitomejoramiento , Triticum/genética , España , Triticum/crecimiento & desarrolloRESUMEN
Although the relevance of spike bracts in stress acclimation and contribution to wheat yield was recently revealed, the metabolome of this organ and its response to water stress is still unknown. The metabolite profiles of flag leaves, glumes and lemmas were characterized under contrasting field water regimes in five durum wheat cultivars. Water conditions during growth were characterized through spectral vegetation indices, canopy temperature and isotope composition. Spike bracts exhibited better coordination of carbon and nitrogen metabolisms than the flag leaves in terms of photorespiration, nitrogen assimilation and respiration paths. This coordination facilitated an accumulation of organic and amino acids in spike bracts, especially under water stress. The metabolomic response to water stress also involved an accumulation of antioxidant and drought tolerance related sugars, particularly in the spikes. Furthermore, certain cell wall, respiratory and protective metabolites were associated with genotypic outperformance and yield stability. In addition, grain yield was strongly predicted by leaf and spike bracts metabolomes independently. This study supports the role of the spike as a key organ during wheat grain filling, particularly under stress conditions and provides relevant information to explore new ways to improve wheat productivity including potential biomarkers for yield prediction.
Asunto(s)
Metaboloma , Metabolómica , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Triticum/anatomía & histología , Triticum/metabolismo , Biomasa , Deshidratación , Sequías , Genotipo , Nitrógeno/metabolismo , Análisis de Componente Principal , Análisis de Regresión , Triticum/genéticaRESUMEN
The regulation of plant transpiration was proposed as a key factor affecting transpiration efficiency and agronomical adaptation of wheat to water-limited Mediterranean environments. However, to date no studies have related this trait to crop performance in the field. In this study, the transpiration response to increasing vapor pressure deficit (VPD) of modern Spanish semi-dwarf durum wheat lines was evaluated under controlled conditions at vegetative stage, and the agronomical performance of the same set of lines was assessed at grain filling as well as grain yield at maturity, in Mediterranean environments ranging from water stressed to good agronomical conditions. A group of linear-transpiration response (LTR) lines exhibited better performance in grain yield and biomass compared to segmented-transpiration response (STR) lines, particularly in the wetter environments, whereas the reverse occurred only in the most stressed trial. LTR lines generally exhibited better water status (stomatal conductance) and larger green biomass (vegetation indices) during the reproductive stage than STR lines. In both groups, the responses to growing conditions were associated with the expression levels of dehydration-responsive transcription factors (DREB) leading to different performances of primary metabolism-related enzymes. Thus, the response of LTR lines under fair to good conditions was associated with higher transcription levels of genes involved in nitrogen (GS1 and GOGAT) and carbon (RCBL) metabolism, as well as water transport (TIP1.1). In conclusion, modern durum wheat lines differed in their response to water loss, the linear transpiration seemed to favor uptake and transport of water and nutrients, and photosynthetic metabolism led to higher grain yield except for very harsh drought conditions. The transpiration response to VPD may be a trait to further explore when selecting adaptation to specific water conditions.