Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Cell Res ; 1864(2): 399-430, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27939167

RESUMEN

Iron is an essential micronutrient that is problematic for biological systems since it is toxic as it generates free radicals by interconverting between ferrous (Fe2+) and ferric (Fe3+) forms. Additionally, even though iron is abundant, it is largely insoluble so cells must treat biologically available iron as a valuable commodity. Thus elaborate mechanisms have evolved to absorb, re-cycle and store iron while minimizing toxicity. Focusing on rarely encountered situations, most of the existing literature suggests that iron toxicity is common. A more nuanced examination clearly demonstrates that existing regulatory processes are more than adequate to limit the toxicity of iron even in response to iron overload. Only under pathological or artificially harsh situations of exposure to excess iron does it become problematic. Here we review iron metabolism and its toxicity as well as the literature demonstrating that intracellular iron is not toxic but a stress responsive programmed cell death-inducing second messenger.


Asunto(s)
Apoptosis/efectos de los fármacos , Hierro/toxicidad , Animales , Humanos
2.
Exp Cell Res ; 342(1): 52-61, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26886577

RESUMEN

Ferritin is a sub-family of iron binding proteins that form multi-subunit nanotype iron storage structures and prevent oxidative stress induced apoptosis. Here we describe the identification and characterization of human ferritin, heavy polypeptide 1 (FTH1) as a suppressor of the pro-apoptotic murine Bax sequence in yeast. In addition we demonstrate that FTH1 is a general pro-survival sequence since it also prevents the cell death inducing effects of copper when heterologously expressed in yeast. Although ferritins are phylogenetically widely distributed and are present in most species of Bacteria, Archaea and Eukarya, ferritin is conspicuously absent in most fungal species including Saccharomyces cerevisiae. An in silico analysis of the yeast proteome lead to the identification of the 161 residue RGI1 (YER067W) encoded protein as a candidate for being a yeast ferritin. In addition to sharing 20% sequence identity with the 183 residue FTH1, RGI1 also has similar pro-survival properties as ferritin when overexpressed in yeast. Analysis of recombinant protein by SDS-PAGE and by electron microscopy revealed the expected formation of higher-order structures for FTH1 that was not observed with Rgi1p. Further analysis revealed that cells overexpressing RGI1 do not show increased resistance to iron toxicity and do not have enhanced capacity to store iron. In contrast, cells lacking RGI1 were found to be hypersensitive to the toxic effects of iron. Overall, our results suggest that Rgi1p is a novel pro-survival protein whose function is not related to ferritin but nevertheless it may have a role in regulating yeast sensitivity to iron stress.


Asunto(s)
Sulfato de Cobre/farmacología , Ferritinas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Proteína X Asociada a bcl-2/fisiología , Secuencia de Aminoácidos , Animales , Cloruros/farmacología , Compuestos Férricos/farmacología , Ferritinas/química , Humanos , Ratones , Viabilidad Microbiana , Datos de Secuencia Molecular , Oxidorreductasas , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido , Estrés Fisiológico
3.
FEMS Yeast Res ; 15(5): fov032, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26032856

RESUMEN

We report the identification of human L- lactate dehydrogenase B (LDHB) as a novel Bax suppressor. Yeast heterologously expressing LDHB is also resistant to the lethal effects of copper indicating that it is a general suppressor of stress mediated cell death. To identify potential LDHB targets, LDHB was expressed in yeast mutants defective in apoptosis, necrosis and autophagy. The absence of functional PCD regulators including MCA1, YBH3, cyclophilin (CPR3) and VMA3, as well as the absence of the pro-survival autophagic pathway (ATG1,7) did not interfere with the LDHB mediated protection against copper indicating that LDHB functions independently of known PCD regulators or by simply blocking or stimulating a common PCD promoting or inhibitory pathway. Measurements of lactate levels revealed that short-term copper stress (1.6 mM, 4 h), does not increase intracellular levels of lactate, instead a three-fold increase in extracellular lactate was observed. Thus, yeast cells resemble mammalian cells where different stresses are known to lead to increased lactate production leading to lactic acidosis. In agreement with this, we found that the addition of exogenous lactic acid to growth media was sufficient to induce cell death that could be inhibited by the expression of LDHB. Taken together our results suggest that lactate dehydrogenase is a general suppressor of PCD in yeast.


Asunto(s)
Apoptosis/genética , Autofagia/genética , Cobre/farmacología , L-Lactato Deshidrogenasa/genética , Saccharomyces cerevisiae/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/farmacología , Necrosis/genética , Saccharomyces cerevisiae/genética , Proteína X Asociada a bcl-2/antagonistas & inhibidores
4.
PLoS One ; 12(8): e0184151, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28854230

RESUMEN

The induction of Programmed Cell Death (PCD) requires the activation of complex responses involving the interplay of a variety of different cellular proteins, pathways, and processes. Uncovering the mechanisms regulating PCD requires an understanding of the different processes that both positively and negatively regulate cell death. Here we have examined the response of normal as well as PCD resistant yeast cells to different PCD inducing stresses. As expected cells expressing the pro-survival human 14-3-3ß/α sequence show increased resistance to numerous stresses including copper and rapamycin. In contrast, other stresses including iron were more lethal in PCD resistant 14-3-3ß/α expressing cells. The increased sensitivity to PCD was not iron and 14-3-3ß/α specific since it was also observed with other stresses (hydroxyurea and zinc) and other pro-survival sequences (human TC-1 and H-ferritin). Although microscopical examination revealed little differences in morphology with iron or copper stresses, cells undergoing PCD in response to high levels of prolonged copper treatment were reduced in size. This supports the interaction some forms of PCD have with the mechanisms regulating cell growth. Analysis of iron-mediated effects in yeast mutant strains lacking key regulators suggests that a functional vacuole is required to mediate the synergistic effects of iron and 14-3-3ß/α on yeast PCD. Finally, mild sub-lethal levels of copper were found to attenuate the observed inhibitory effects of iron. Taken together, we propose a model in which a subset of stresses like iron induces a complex process that requires the cross-talk of two different PCD inducing pathways.


Asunto(s)
Proteínas 14-3-3/genética , Hierro/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas 14-3-3/metabolismo , Cobre/metabolismo , Cobre/toxicidad , Ferritinas/genética , Ferritinas/metabolismo , Expresión Génica , Humanos , Hierro/toxicidad , Mutación , Saccharomyces cerevisiae/metabolismo
5.
Microb Cell ; 2(7): 247-255, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28357300

RESUMEN

The human Thyroid Cancer-1 (hTC-1) protein, also known as C8orf4 was initially identified as a gene that was up-regulated in human thyroid cancer. Here we show that hTC-1 is a peptide that prevents the effects of over-expressing Bax in yeast. Analysis of the 106 residues of hTC-1 in available protein databases revealed direct orthologues in jawed-vertebrates, including mammals, frogs, fish and sharks. No TC-1 orthologue was detected in lower organisms, including yeast. Here we show that TC-1 is a general pro-survival peptide since it prevents the growth- and cell death-inducing effects of copper in yeast. Human TC-1 also prevented the deleterious effects that occur due to the over-expression of a number of key pro-apoptotic peptides, including YCA1, YBH3, NUC1, and AIF1. Even though the protective effects were more pronounced with the over-expression of YBH3 and YCA1, hTC-1 could still protect yeast mutants lacking YBH3 and YCA1 from the effects of copper sulfate. This suggests that the protective effects of TC-1 are not limited to specific pathways or processes. Taken together, our results indicate that hTC-1 is a pro-survival protein that retains its function when heterologously expressed in yeast. Thus yeast is a useful model to characterize the potential roles in cell death and survival of cancer related genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA