Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 40(3): 88, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334894

RESUMEN

The bioprospection of indigenous microorganism strains with biotechnological potential represents a prominent trend. Metschnikowia yeasts exhibit diverse capabilities, such as ethanol reduction in winemaking, biocontrol potential, and lipid production. In this work, local Metschnikowia strains were isolated from different fruits by their ability to produce pulcherrimic acid, a molecule that has been linked to biocontrol activity and that binds iron giving colored colonies. Five strains were selected, each from one of five distinct sources. All of them were identified as M. pulcherrima. All five were able inhibit other yeasts and one M. pulcherrima, called M7, inhibited the growth of Aspergillus nidulans. The selected strains accumulated lipid bodies in stationary phase. Certain non-conventional yeasts like Hanseniaspora vineae are very sensitive to biomass drying, but cell extracts from M. pulcherrima added to the growth media as a source of antioxidant lipids increased their tolerance to drying. All strains isolated showed good stress tolerance (particularly to heat) and have nutrient requirements similar to a commercial M. pulcherrima strain. In addition, the M7 strain had a good growth in sugarcane and beet molasses and behaved like Saccharomyces cerevisiae in a growth medium derived from agricultural waste, a persimmon hydrolysate. Therefore, the isolation of local strains of Metschnikowia able to grow in a variety of substrates is a good source of biocontrol agents.


Asunto(s)
Metschnikowia , Vino , Saccharomyces cerevisiae/metabolismo , Metschnikowia/metabolismo , Vino/análisis , Frutas , Lípidos
2.
Microb Cell Fact ; 19(1): 124, 2020 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-32505207

RESUMEN

BACKGROUND: Saccharomyces cerevisiae wine strains can develop stuck or sluggish fermentations when nutrients are scarce or suboptimal. Nutrient sensing and signaling pathways, such as PKA, TORC1 and Snf1, work coordinately to adapt growth and metabolism to the amount and balance of the different nutrients in the medium. This has been exhaustively studied in laboratory strains of S. cerevisiae and laboratory media, but much less under industrial conditions. RESULTS: Inhibitors of such pathways, like rapamycin or 2-deoxyglucose, failed to discriminate between commercial wine yeast strains with different nutritional requirements, but evidenced genetic variability among industrial isolates, and between laboratory and commercial strains. Most signaling pathways involve events of protein phosphorylation that can be followed as markers of their activity. The main pathway to promote growth in the presence of nitrogen, the TORC1 pathway, measured by the phosphorylation of Rps6 and Par32, proved active at the very start of fermentation, mainly on day 1, and ceased soon afterward, even before cellular growth stopped. Transcription factor Gln3, which activates genes subject to nitrogen catabolite repression, was also active for the first hours, even when ammonium and amino acids were still present in media. Snf1 kinase was activated only when glucose was exhausted under laboratory conditions, but was active from early fermentation stages. The same results were generally obtained when nitrogen was limiting, which indicates a unique pathway activation pattern in winemaking. As PKA remained active throughout fermentation, it could be the central pathway that controls others, provided sugars are present. CONCLUSIONS: Wine fermentation is a distinct environmental situation from growth in laboratory media in molecular terms. The mechanisms involved in glucose and nitrogen repression respond differently under winemaking conditions.


Asunto(s)
Medios de Cultivo/metabolismo , Fermentación , Saccharomyces cerevisiae/metabolismo , Vino/microbiología , Transducción de Señal , Vitis/microbiología
3.
Food Microbiol ; 92: 103589, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32950173

RESUMEN

Non-Saccharomyces wine yeasts are useful tools for producing wines with complex aromas or low ethanol content. Their use in wine would benefit from their production as active dry yeast (ADY) starters to be used as co-inocula alongside S. cerevisiae. Oxidative stress during biomass propagation and dehydration is a key factor in determining ADY performance, as it affects yeast vitality and viability. Several studies have analysed the response of S. cerevisiae to oxidative stress under dehydration conditions, but not so many deal with non-conventional yeasts. In this work, we analysed eight non-Saccharomyces wine yeasts under biomass production conditions and studied oxidative stress parameters and lipid composition. The results revealed wide variability among species in their technological performance during ADY production. Also, for Metschnikowia pulcherrima and Starmerella bacillaris, better performance correlates with high catalase activity and glutathione levels. Our data suggest that non-Saccharomyces wine yeasts with an enhanced oxidative stress response are better suited to grow under ADY production conditions.


Asunto(s)
Catalasa/metabolismo , Proteínas Fúngicas/metabolismo , Glutatión/metabolismo , Metschnikowia/metabolismo , Saccharomycetales/metabolismo , Fermentación , Metschnikowia/enzimología , Odorantes/análisis , Estrés Oxidativo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/enzimología , Vitis/química , Vitis/microbiología , Vino/análisis , Vino/microbiología
4.
Appl Environ Microbiol ; 85(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30683739

RESUMEN

Thioredoxins are small proteins that regulate the cellular redox state, prevent oxidative damage, and play an active role in cell repair. Oxidative stress has proven to be of much relevance in biotechnological processes when the metabolism of Saccharomyces cerevisiae is mainly respiratory. During wine yeast starter production, active dry yeast cytosolic thioredoxin Trx2p is a key player in protecting metabolic enzymes from being oxidized by carbonylation. Less is known about the role of redox control during grape juice fermentation. A mutant strain that lacked both cytosolic thioredoxins, Trx1p and Trx2p, was tested for grape juice fermentation. Its growth and sugar consumption were greatly impaired, which indicates the system's relevance under fermentative conditions. A proteomic analysis indicated that deletion of the genes TRX1 and TRX2 caused a reduction in the ribosomal proteins and factors involved in translation elongation in addition to enzymes for glycolysis and amino acid biosynthesis. A metabolomic analysis of the trx1Δ trx2Δ mutant showed an increase in most proteogenic amino acids, phospholipids, and sphingolipids and higher fatty acid desaturase Ole1p content. Low glycolytic activity was behind the reduced growth and fermentative capacity of the thioredoxin deletion strain. All three hexokinases were downregulated in the mutant strain, but total hexokinase activity remained, probably due to posttranslational regulation. Pyruvate kinase Cdc19p presented an early level of aggregation in the trx1Δ trx2Δ mutant, which may contribute to a diminished hexose metabolism and trigger regulatory mechanisms that could influence the level of glycolytic enzymes.IMPORTANCE Oxidative stress is a common hazardous condition that cells have to face in their lifetime. Oxidative damage may diminish cell vitality and viability by reducing metabolism and eventually leading to aging and ultimate death. Wine yeast Saccharomyces cerevisiae also faces oxidative attack during its biotechnological uses. One of the main yeast antioxidant systems involves two small proteins called thioredoxins. When these two proteins are removed, wine yeast shows diminished growth, protein synthesis, and sugar metabolism under wine-making conditions, and amino acid and lipid metabolism are also affected. Altogether, our results indicate that proper redox regulation is a key factor for metabolic adaptations during grape juice fermentation.


Asunto(s)
Citosol/metabolismo , Glucólisis/fisiología , Metabolismo de los Lípidos/fisiología , Biosíntesis de Proteínas/fisiología , Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/metabolismo , Vino/análisis , Fermentación , Eliminación de Gen , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metabolómica , Oxidación-Reducción , Estrés Oxidativo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Biosíntesis de Proteínas/genética , Proteómica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/genética , Vitis
5.
FEMS Yeast Res ; 17(1)2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27956494

RESUMEN

Grape juice fermentation is a harsh environment with many stressful conditions, and Saccharomyces cerevisiae adapts its metabolism in response to those environmental challenges. Many nutrient-sensing pathways control this feature. The Tor/Sch9p pathway promotes growth and protein synthesis when nutrients are plenty, while the transcription factor Gcn4p is required for the activation of amino acid biosynthetic pathways. We previously showed that Sch9p impact on longevity depends on the nitrogen/carbon ratio. When nitrogen is limiting, SCH9 deletion shortens chronological life span, which is the case under winemaking conditions. Its deletion also increases glycerol during fermentation, so the impact of this pathway on metabolism under winemaking conditions was studied by transcriptomic and metabolomic approaches. SCH9 deletion causes the upregulation of many amino acid biosynthesis pathways. When Gcn4p was overexpressed during winemaking, increased glycerol production was also observed. Therefore, both pathways are related in terms of glycerol production. SCH9 deletion increased the amount of the limiting enzyme in glycerol biosynthesis, glycerol-3-P dehydrogenase Gpd1p at the protein level. The impact on the metabolome of SCH9 deletion and GCN4 overexpression differed, although both showed a downregulation of glycolysis. SCH9 deletion downregulated the amount of most proteinogenic amino acids and increased the amount of lipids, such as ergosterol.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación Fúngica de la Expresión Génica , Glicerol/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Vino/microbiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Eliminación de Gen , Expresión Génica , Perfilación de la Expresión Génica , Metabolómica , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
6.
Appl Microbiol Biotechnol ; 100(11): 5017-27, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26846624

RESUMEN

Glycerol is a key yeast metabolite in winemaking because it contributes to improve the organoleptic properties of wine. It is also a cellular protective molecule that enhances the tolerance of yeasts to osmotic stress and promotes longevity. Thus, its production increases by genetic manipulation, which is of biotechnological and basic interest. Glycerol is produced by diverting glycolytic glyceraldehyde-3-phosphate through the action of glycerol-3-phosphate dehydrogenase (coded by genes GPD1 and GPD2). Here, we demonstrate that RNA-binding protein Pub1p regulates glycerol production by controlling Gpd1p activity. Its deletion does not alter GPD1 mRNA levels, but protein levels and enzymatic activity increase, which explains the higher intracellular glycerol concentration and greater tolerance to osmotic stress of the pub1∆ mutant. PUB1 deletion also enhances the activity of nicotinamidase, a longevity-promoting enzyme. Both enzymatic activities are partially located in peroxisomes, and we detected peroxisome formation during wine fermentation. The role of Pub1p in life span control depends on nutrient conditions and is related with the TOR pathway, and a major connection between RNA metabolism and the nutrient signaling response is established.


Asunto(s)
Glicerol-3-Fosfato Deshidrogenasa (NAD+)/metabolismo , Glicerol/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Vino/análisis , Fermentación , Manipulación de Alimentos , Jugos de Frutas y Vegetales/microbiología , Regulación Fúngica de la Expresión Génica , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/genética , Glicerolfosfato Deshidrogenasa/genética , Glicerolfosfato Deshidrogenasa/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Presión Osmótica , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Unión a Poli(A)/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico , Vitis/microbiología , Vino/microbiología
7.
FEMS Yeast Res ; 14(6): 845-57, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24920206

RESUMEN

Cell-to-cell and cell-to-environment interactions of microorganisms are of substantial relevance for their biotechnological use. In the yeast Saccharomyces cerevisiae, flocculation can be an advantage to clarify final liquid products after fermentation, and biofilm formation may be relevant for the encapsulation of strains of interest. The adhesion properties of wine yeast strains can be modified by the genetic manipulation of transcriptional regulatory proteins, such as histone deacetylases, and acetylases. Sirtuin SIR2 is essential for the formation of mat structures, a kind of biofilm that requires the expression of cell-wall protein FLO11 as its deletion reduces FLO11 expression, and adhesion of cells to themselves and to agar in a commercial wine strain. Deletion of acetyltransferase GCN5 leads to a similar phenotype. A naturally flocculant wine yeast strain called P2 was characterized. Its flocculation happens only during grape juice fermentation and is due to the presence of a highly transcribed version of flocculin FLO5, linked to the presence of a δ sequence in the promoter. Deletion of acetyltransferase SAS2 enhances this phenotype and maltose fermentation even more. Therefore, the manipulation of acetylation/deacetylation machinery members is a valid way to alter the interaction of industrial yeast to their environment.


Asunto(s)
Biopelículas , Histona Acetiltransferasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Alelos , Fermentación , Floculación , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Fenotipo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Vino
8.
J Biotechnol ; 390: 28-38, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38768686

RESUMEN

Nutrient signaling pathways play a pivotal role in regulating the balance among metabolism, growth and stress response depending on the available food supply. They are key factors for the biotechnological success of the yeast Saccharomyces cerevisiae during food-producing fermentations. One such pathway is Retrograde Response, which controls the alpha-ketoglutarate supply required for the synthesis of amino acids like glutamate and lysine. Repressor MKS1 is linked with the TORC1 complex and negatively regulates this pathway. Deleting MKS1 from a variety of industrial strains causes glycerol to increase during winemaking, brewing and baking. This increase is accompanied by a reduction in ethanol production during grape juice fermentation in four commercial wine strains. Interestingly, this does not lead volatile acidity to increase because acetic acid levels actually lower. Aeration during winemaking usually increases acetic acid levels, but this effect reduces in the MKS1 mutant. Despite the improvement in the metabolites of oenological interest, it comes at a cost given that the mutant shows slower fermentation kinetics when grown in grape juice, malt and laboratory media and using glucose, sucrose and maltose as carbon sources. The deletion of RTG2, an activator of Retrograde Response that acts as an antagonist of MKS1, also results in a defect in wine fermentation speed. These findings suggest that the deregulation of this pathway causes a fitness defect. Therefore, manipulating repressor MKS1 is a promising approach to modulate yeast metabolism and to produce low-ethanol drinks.


Asunto(s)
Etanol , Fermentación , Glicerol , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vino , Glicerol/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Etanol/metabolismo , Vino/microbiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulación hacia Arriba , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Regulación Fúngica de la Expresión Génica , Transaminasas
9.
Microb Cell Fact ; 12: 1, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23282100

RESUMEN

BACKGROUND: Yeast viability and vitality are essential for different industrial processes where the yeast Saccharomyces cerevisiae is used as a biotechnological tool. Therefore, the decline of yeast biological functions during aging may compromise their successful biotechnological use. Life span is controlled by a variety of molecular mechanisms, many of which are connected to stress tolerance and genomic stability, although the metabolic status of a cell has proven a main factor affecting its longevity. Acetic acid and ethanol accumulation shorten chronological life span (CLS), while glycerol extends it. RESULTS: Different age-related gene classes have been modified by deletion or overexpression to test their role in longevity and metabolism. Overexpression of histone deacetylase SIR2 extends CLS and reduces acetate production, while overexpression of SIR2 homolog HST3 shortens CLS, increases the ethanol level, and reduces acetic acid production. HST3 overexpression also enhances ethanol tolerance. Increasing tolerance to oxidative stress by superoxide dismutase SOD2 overexpression has only a moderate positive effect on CLS. CLS during grape juice fermentation has also been studied for mutants on several mRNA binding proteins that are regulators of gene expression at the posttranscriptional level; we found that NGR1 and UTH4 deletions decrease CLS, while PUF3 and PUB1 deletions increase it. Besides, the pub1Δ mutation increases glycerol production and blocks stress granule formation during grape juice fermentation. Surprisingly, factors relating to apoptosis, such as caspase Yca1 or apoptosis-inducing factor Aif1, play a positive role in yeast longevity during winemaking as their deletions shorten CLS. CONCLUSIONS: Manipulation of regulators of gene expression at both transcriptional (i.e., sirtuins) and posttranscriptional (i.e., mRNA binding protein Pub1) levels allows to modulate yeast life span during its biotechnological use. Due to links between aging and metabolism, it also influences the production profile of metabolites of industrial relevance.


Asunto(s)
Longevidad/genética , Saccharomyces cerevisiae/metabolismo , Vino/microbiología , Ácido Acético/metabolismo , Apoptosis , Caspasas/metabolismo , Etanol/metabolismo , Fermentación , Eliminación de Gen , Glicerol/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Mutación , NADH NADPH Oxidorreductasas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/genética , Sirtuina 2/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Transcripción Genética
10.
Front Microbiol ; 14: 1209940, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346752

RESUMEN

The use of non-Saccharomyces yeasts as starters in winemaking has increased exponentially in the last years. For instance, non-conventional yeasts have proven useful for the improvement of the organoleptic profile and biocontrol. Active dry yeast starter production has been optimized for Saccharomyces cerevisiae, which may entail problems for the propagation of non-Saccharomyces yeasts. This work shows that the poor growth of Hanseniaspora vineae and Metschnikowia pulcherrima in molasses is related to a deficient sucrose consumption, linked to their low invertase activity. In order to address this issue, simple modifications to the cultivation media based hydrolysis and the reduction of sucrose concentration were performed. We performed biomass propagation simulations at a bench-top and bioreactor scale. The results show that cultivation in a hexose-based media improved biomass production in both species, as it solves their low invertase activity. The reduction in sugar concentration promoted a metabolic shift to a respiratory metabolism, which allowed a higher biomass yield, but did not improve total biomass production, due to the lower sugar availability. To evaluate the technological performance of these adaptations, we performed mixed grape juice fermentations with biomass produced in such conditions of M. pulcherrima and S. cerevisiae. The analysis of wines produced revealed that the different treatments we have tested did not have any negative impact on wine quality, further proving their applicability at an industrial level for the improvement of biomass production.

11.
Appl Environ Microbiol ; 78(8): 2748-57, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22327582

RESUMEN

Most grape juice fermentation takes place when yeast cells are in a nondividing state called the stationary phase. Under such circumstances, we aimed to identify the genetic determinants controlling longevity, known as the chronological life span. We identified commercial strains with both short (EC1118) and long (CSM) life spans in laboratory growth medium and compared them under diverse conditions. Strain CSM shows better tolerance to stresses, including oxidative stress, in the stationary phase. This is reflected during winemaking, when this strain has an increased maximum life span. Compared to EC1118, CSM overexpresses a mitochondrial rhodanese gene-like gene, RDL2, whose deletion leads to increased reactive oxygen species production at the end of fermentation and a correlative loss of viability at this point. EC1118 shows faster growth and higher expression of glycolytic genes, and this is related to greater PKA activity due to the upregulation of the adenylate cyclase gene. This phenotype has been linked to the presence of a δ element in its promoter, whose removal increases the life span. Finally, EC1118 exhibits a higher level of protein degradation by autophagy, which might help achieve fast growth at the expense of cellular structures and may be relevant for long-term survival under winemaking conditions.


Asunto(s)
Adenilil Ciclasas/metabolismo , Autofagia , Estrés Oxidativo , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico , Vino/microbiología , Perfilación de la Expresión Génica , Viabilidad Microbiana , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
12.
Microb Cell Fact ; 11: 104, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22873488

RESUMEN

BACKGROUND: Viability in a non dividing state is referred to as chronological life span (CLS). Most grape juice fermentation happens when Saccharomyces cerevisiae yeast cells have stopped dividing; therefore, CLS is an important factor toward winemaking success. RESULTS: We have studied both the physical and chemical determinants influencing yeast CLS. Low pH and heat shorten the maximum wine yeast life span, while hyperosmotic shock extends it. Ethanol plays an important negative role in aging under winemaking conditions, but additional metabolites produced by fermentative metabolism, such as acetaldehyde and acetate, have also a strong impact on longevity. Grape polyphenols quercetin and resveratrol have negative impacts on CLS under winemaking conditions, an unexpected behavior for these potential anti-oxidants. We observed that quercetin inhibits alcohol and aldehyde dehydrogenase activities, and that resveratrol performs a pro-oxidant role during grape juice fermentation. Vitamins nicotinic acid and nicotinamide are precursors of NAD+, and their addition reduces mean longevity during fermentation, suggesting a metabolic unbalance negative for CLS. Moreover, vitamin mix supplementation at the end of fermentation shortens CLS and enhances cell lysis, while amino acids increase life span. CONCLUSIONS: Wine S. cerevisiae strains are able to sense changes in the environmental conditions and adapt their longevity to them. Yeast death is influenced by the conditions present at the end of wine fermentation, particularly by the concentration of two-carbon metabolites produced by the fermentative metabolism, such as ethanol, acetic acid and acetaldehyde, and also by the grape juice composition, particularly its vitamin content.


Asunto(s)
Carbono/metabolismo , Viabilidad Microbiana , Polifenoles/metabolismo , Saccharomyces cerevisiae/metabolismo , Vitaminas/metabolismo , Vino/microbiología , Aldehído Deshidrogenasa/metabolismo , Etanol/metabolismo , Fermentación , Concentración de Iones de Hidrógeno , Niacina/química , Niacinamida/química , Polifenoles/química , Saccharomyces cerevisiae/crecimiento & desarrollo , Vitaminas/química
13.
Cell Mol Biol Lett ; 17(3): 393-407, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22610976

RESUMEN

The gene SPI1, of Saccharomyces cerevisiae, encodes a cell wall protein that is induced in several stress conditions, particularly in the postdiauxic and stationary phases of growth. It has a paralogue, SED1, which shows some common features in expression regulation and in the null mutant phenotype. In this work we have identified homologues in other species of yeasts and filamentous fungi, and we have also elucidated some aspects of the origin of SPI1, by duplication and diversification of SED1. In terms of regulation, we have found that the expression in the post-diauxic phase is regulated by genes related to the PKA pathway and stress response (MSN2/4, YAK1, POP2, SOK2, PHD1, and PHO84) and by genes involved in the PKC pathway (WSC2, PKC1, and MPK1).


Asunto(s)
Glicoproteínas de Membrana/genética , Filogenia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae , Secuencia de Aminoácidos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Duplicación de Gen , Regulación Fúngica de la Expresión Génica , Glicoproteínas de Membrana/metabolismo , Datos de Secuencia Molecular , Proteína Quinasa C/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Estrés Fisiológico/genética , Transcripción Genética
14.
Food Res Int ; 159: 111649, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940817

RESUMEN

The bulk of grape juice fermentation is carried out by the yeast Saccharomyces cerevisiae, but non-Saccharomyces yeasts can modulate many sensorial aspects of the final products in ways not well understood. In this study, some of such non-conventional yeasts were screened as mixed starter cultures in a defined growth medium in both simultaneous and sequential inoculations. One strain of Starmerella bacillaris and another of Zygosaccharomyces bailii were chosen by their distinct phenotypic footprint and their ability to reduce ethanol levels at the end of fermentation. S. bacillaris losses viability strongly at the end of mixed fermentations, while Z. bailii remains viable. S. cerevisiae viability was unchanged by the presence of the other yeasts. Physiological characterization of both strains indicates that S. bacillaris behavior is overall more different from S. cerevisiae than Z. bailii. In addition, S. cerevisiae transcriptome changes to a bigger degree in the presence of S. bacillaris in comparison to mixed fermentation with Z. bailii. S. bacillaris induces the translation machinery and repress vesicular transport. Both non-Saccharomyces yeasts induce S. cerevisiae glycolytic genes, and that may be related to ethanol lowering, but some aspects of carbon-related mechanisms are specific for each strain. Z. bailii presence increases the stress-related polysaccharides trehalose and glycogen, while S. bacillaris induces gluconeogenesis genes.


Asunto(s)
Vino , Etanol/análisis , Fermentación , Saccharomyces cerevisiae/metabolismo , Saccharomycetales , Vino/análisis
15.
Arch Microbiol ; 193(7): 515-25, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21442317

RESUMEN

SPI1 is a gene whose expression responds to many environmental stimuli, including entry into stationary phase. We have performed a screening to identify genes that activate SPI1 promoter when overexpressed. The phosphatidylinositol-4-phosphate 5-kinase gene MSS4 was identified as a positive activator of SPI1. Another SPI1 transcriptional regulator isolated was the flavodoxin-like gene YCP4. YCP4 and its homolog RFS1 regulate the expression of many genes during the late stages of growth. The double deletion mutant in YCP4 and its homolog RFS1 has an impact on gene expression related to metabolism by increasing the expression of genes involved in hexose transport and glycolysis, and decreasing expression of genes of amino acid metabolism pathways. Genes related to mating and response to pheromone show a decreased expression in the double mutant, while transcription of genes involved in translational elongation is increased. Deletion of these genes, together with the third member of the family, PST2, has a complex effect on the stress response. For instance, double mutant ycp4Δrfs1Δ has an increased response to oxidative stress, but a decreased tolerance to cell-damaging agent SDS. Additionally, this mutation affects chronological aging and slightly increases fermentative capacity.


Asunto(s)
Flavodoxina/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Fermentación , Flavodoxina/genética , Perfilación de la Expresión Génica , Genes Fúngicos , Glicoproteínas de Membrana/metabolismo , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Fosfotransferasas (Aceptor de Grupo Alcohol) , Regiones Promotoras Genéticas , ARN de Hongos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Microorganisms ; 8(10)2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036195

RESUMEN

Peroxiredoxins are a family of peroxide-degrading enzymes for challenging oxidative stress. They receive their reducing power from redox-controlling proteins called thioredoxins, and these, in turn, from thioredoxin reductase. The main cytosolic peroxiredoxin is Tsa1, a moonlighting protein that also acts as protein chaperone a redox switch controlling some metabolic events. Gene deletion of peroxiredoxins in wine yeasts indicate that TSA1, thioredoxins and thioredoxin reductase TRR1 are required for normal growth in medium with glucose and sucrose as carbon sources. TSA1 gene deletion also diminishes growth in molasses, both in flasks and bioreactors. The TSA1 mutation brings about an expected change in redox parameters but, interestingly, it also triggers a variety of metabolic changes. It influences trehalose accumulation, lowering it in first molasses growth stages, but increasing it at the end of batch growth, when respiratory metabolism is set up. Glycogen accumulation at the entry of the stationary phase also increases in the tsa1D mutant. The mutation reduces fermentative capacity in grape juice, but the vinification profile does not significantly change. However, acetic acid and acetaldehyde production decrease when TSA1 is absent. Hence, TSA1 plays a role in the regulation of metabolic reactions leading to the production of such relevant enological molecules.

17.
Int J Food Microbiol ; 317: 108462, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-31794930

RESUMEN

Yeasts involved in the spontaneous fermentation of traditional beverages like chicha (indigenous Andean beer) may have the potential to be used as starter cultures to improve the quality and microbiological safety of these products, but also as non-conventional alternatives to other food alcoholic fermentations. In this research, we isolated, identified and characterised yeast strains from four Ecuadorian chichas made by using four different raw materials: rice (RC), oat (OC), grape (GC) and a mixture of seven corn varieties (yamor, YC). Finally, 254 yeast isolates were obtained and identified by molecular methods. Eleven yeast genera and 16 yeast species were identified with relatively few isolates belonging to Saccharomyces cerevisiae (9.1% belonging to 6 strains) and Torulaspora delbrueckii (18.6% belonging to 2 strains). In order to select good candidates for fermentative starter production, different analyses were performed. The results of the stress response tests showed a wide variability between species and strains, and identified some yeasts displaying high stress tolerance, similarly to commercial wine strains. Amylase production was screened as being indicative of the capacity to degrade and ferment starch-rich substrates. A Cryptococcus sp. isolate showed the highest amylase activity. The growth rate and fermentative capacity in molasses medium was measured for three S. cerevisiae, T. delbrueckii and Candida sp. strains as tests for yield and performance in biomass production. Based on their excellent behaviour, three S. cerevisiae strains and one T. delbrueckii strain were selected for further analyses, including dehydration tolerance and invertase activity as additional desired traits for chicha starters. All the S. cerevisiae strains exhibited high invertase activity and one also displayed high resistance to dehydration. The yeasts selected in this study can thus be suitably used as dry starters for the microbiologically controlled production of traditional beverages, and also for other alcoholic fermentations.


Asunto(s)
Cerveza/microbiología , Fermentación/fisiología , Saccharomyces cerevisiae/metabolismo , Torulaspora/metabolismo , beta-Fructofuranosidasa/metabolismo , Avena/microbiología , Ecuador , Industria de Alimentos , Oryza/microbiología , Saccharomyces cerevisiae/aislamiento & purificación , Torulaspora/aislamiento & purificación , Vitis/microbiología , Vino/microbiología , Levaduras/clasificación , Levaduras/aislamiento & purificación , Levaduras/metabolismo , Zea mays/microbiología
18.
Artículo en Inglés | MEDLINE | ID: mdl-32793580

RESUMEN

The ability of the yeast Saccharomyces cerevisiae to adapt to the changing environment of industrial processes lies in the activation and coordination of many molecular pathways. The most relevant ones are nutrient signaling pathways because they control growth and stress response mechanisms as a result of nutrient availability or scarcity and, therefore, leave an ample margin to improve yeast biotechnological performance. A standardized grape juice fermentation assay allowed the analysis of mutants for different elements of many nutrient signaling pathways under different conditions (low/high nitrogen and different oxygenation levels) to allow genetic-environment interactions to be analyzed. The results indicate that the cAMP-dependent PKA pathway is the most relevant regardless of fermentation conditions, while mutations on TOR pathways display an effect that depends on nitrogen availability. The production of metabolites of interest, such as glycerol, acetic acid and pyruvate, is controlled in a coordinated manner by the contribution of several components of different pathways. Ras GTPase Ras2, a stimulator of cAMP production, is a key factor for achieving fermentation, and is also relevant for sensing nitrogen availability. Increasing cAMP concentrations by deleting an enzyme used for its degradation, phosphodiesterase Pde2, proved a good way to increase fermentation kinetics, and offered keys for biotechnological improvement. Surprisingly glucose repression protein kinase Snf1 and Nitrogen Catabolite Repression transcription factor Gln3 are relevant in fermentation, even in the absence of starvation. Gln3 proved essential for respiration in several genetic backgrounds, and its presence is required to achieve full glucose de-repression. Therefore, most pathways sense different types of nutrients and only their coordinated action can ensure successful wine fermentation.

19.
Nucleic Acids Res ; 35(7): 2191-8, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17355984

RESUMEN

The nucleolus is the site of ribosome synthesis in the nucleus, whose integrity is essential. Epigenetic mechanisms are thought to regulate the activity of the ribosomal RNA (rRNA) gene copies, which are part of the nucleolus. Here we show that human cells lacking DNA methyltransferase 1 (Dnmt1), but not Dnmt33b, have a loss of DNA methylation and an increase in the acetylation level of lysine 16 histone H4 at the rRNA genes. Interestingly, we observed that SirT1, a NAD+-dependent histone deacetylase with a preference for lysine 16 H4, interacts with Dnmt1; and SirT1 recruitment to the rRNA genes is abrogated in Dnmt1 knockout cells. The DNA methylation and chromatin changes at ribosomal DNA observed are associated with a structurally disorganized nucleolus, which is fragmented into small nuclear masses. Prominent nucleolar proteins, such as Fibrillarin and Ki-67, and the rRNA genes are scattered throughout the nucleus in Dnmt1 deficient cells. These findings suggest a role for Dnmt1 as an epigenetic caretaker for the maintenance of nucleolar structure.


Asunto(s)
Nucléolo Celular/ultraestructura , ADN (Citosina-5-)-Metiltransferasas/fisiología , Metilación de ADN , ADN Ribosómico/metabolismo , Epigénesis Genética , Genes de ARNr , Línea Celular Tumoral , Nucléolo Celular/genética , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , Eliminación de Gen , Histonas/metabolismo , Humanos , Sirtuina 1 , Sirtuinas/metabolismo , Transcripción Genética
20.
Sci Rep ; 8(1): 16500, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405153

RESUMEN

The thioredoxin system plays a predominant role in the control of cellular redox status. Thioredoxin reductase fuels the system with reducing power in the form of NADPH. The TORC1 complex promotes growth and protein synthesis when nutrients, particularly amino acids, are abundant. It also represses catabolic processes, like autophagy, which are activated during starvation. We analyzed the impact of yeast cytosolic thioredoxin reductase TRR1 deletion under different environmental conditions. It shortens chronological life span and reduces growth in grape juice fermentation. TRR1 deletion has a global impact on metabolism during fermentation. As expected, it reduces oxidative stress tolerance, but a compensatory response is triggered, with catalase and glutathione increasing. Unexpectedly, TRR1 deletion causes sensitivity to the inhibitors of the TORC1 pathway, such as rapamycin. This correlates with low Tor2p kinase levels and indicates a direct role of Trr1p in its stability. Markers of TORC1 activity, however, suggest increased TORC1 activity. The autophagy caused by nitrogen starvation is reduced in the trr1Δ mutant. Ribosomal protein Rsp6p is dephosphorylated in the presence of rapamycin. This dephosphorylation diminishes in the TRR1 deletion strain. These results show a complex network of interactions between thioredoxin reductase Trr1p and the processes controlled by TOR.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Levaduras/metabolismo , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Eliminación de Gen , Transducción de Señal , Tiorredoxina Reductasa 1/genética , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA