Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Emerg Infect Dis ; 27(11): 2957-2960, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34437831

RESUMEN

We developed a genomic surveillance program for real-time monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) in Uruguay. We report on a PCR method for SARS-CoV-2 VOCs, the surveillance workflow, and multiple independent introductions and community transmission of the SARS-CoV-2 P.1 VOC in Uruguay.


Asunto(s)
COVID-19 , SARS-CoV-2 , Genómica , Humanos , Uruguay/epidemiología
2.
Emerg Infect Dis ; 27(7): 1789-1794, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33883059

RESUMEN

A 37-year-old healthcare worker from the northeastern region of Brazil experienced 2 clinical episodes of coronavirus disease. Infection with severe acute respiratory syndrome coronavirus 2 was confirmed by reverse transcription PCR in samples collected 116 days apart. Whole-genome sequencing revealed that the 2 infections were caused by the most prevalent lineage in Brazil, B.1.1.33, and the emerging lineage P.2. The first infection occurred in June 2020; Bayesian analysis suggests reinfection at some point during September 14-October 11, 2020, a few days before the second episode of coronavirus disease. Of note, P.2 corresponds to an emergent viral lineage in Brazil that contains the mutation E484K in the spike protein. The P.2 lineage was initially detected in the state of Rio de Janeiro, and since then it has been found throughout the country. Our findings suggest not only a reinfection case but also geographic dissemination of the emerging Brazil clade P.2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Teorema de Bayes , Brasil/epidemiología , Humanos , Reinfección
3.
Virol J ; 12: 123, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26260343

RESUMEN

BACKGROUND: The RNA silencing pathway is an important anti-viral defense mechanism in plants. As a counter defense, some members of the viral family Luteoviridae are able to evade host immunity by encoding the P0 RNA silencing suppressor protein. Here we explored the functional diversity of P0 proteins among eight cotton leafroll dwarf virus (CLRDV) isolates, a virus associated with a worldwide cotton disease known as cotton blue disease (CBD). METHODS: CLRDV-infected cotton plants of different varieties were collected from five growing fields in Brazil and their P0 sequences compared to three previously obtained isolates. P0's silencing suppression activities were scored based on transient expression experiments in Nicotiana benthamiana leaves. RESULTS: High sequence diversity was observed among CLRDV P0 proteins, indicating that some isolates found in cotton varieties formerly resistant to CLRDV should be regarded as new genotypes within the species. All tested proteins were able to suppress local and systemic silencing, but with significantly variable degrees. All P0 proteins were able to mediate the decay of ARGONAUTE proteins, a key component of the RNA silencing machinery. CONCLUSIONS: The sequence diversity observed in CLRDV P0s is also reflected in their silencing suppression capabilities. However, the strength of local and systemic silencing suppression was not correlated for some proteins.


Asunto(s)
Gossypium/virología , Luteoviridae/metabolismo , Enfermedades de las Plantas/virología , Proteínas Virales/metabolismo , Brasil , Expresión Génica , Silenciador del Gen , Genes Reporteros , Variación Genética , Geografía , Luteoviridae/clasificación , Luteoviridae/genética , Luteoviridae/aislamiento & purificación , Filogenia , Plantas Modificadas Genéticamente , Proteínas Virales/genética
4.
Microbiol Spectr ; 12(4): e0370923, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38451227

RESUMEN

Rotavirus A (RVA) is a major cause of acute gastroenteritis globally that is classically genotyped by its two immunodominant outer capsid proteins, VP7 (G-) and VP4 (P-). Recent evidence suggests that the reassortant equine-like G3P[8] strain played a substantial role in RVA transmission in Brazil since 2015. To understand its global emergence and dissemination in Brazilian territory, stool samples collected from 11 Brazilian states (n = 919) were genotyped by RT-qPCR and proceeded to sequence the VP7 gene (n = 102, 79 being newly generated) of the G3P[8] samples with pronounced viral loads. Our phylogenetic genotyping showed that G3P[8] became the dominant strain in Brazil between 2017 and 2020, with equine-like variants representing 75%-100% of VP7 samples in this period. A Bayesian discrete phylogeographic analysis strongly suggests that the equine-like G3P[8] strain originated in Asia during the early 2010s and subsequently spread to Europe, the Caribbean, and South America. Multiple introductions were detected in Brazil between 2014 and 2017, resulting in five national clusters. The reconstruction of the effective population size of the largest Brazilian cluster showed an expansion until 2017, followed by a plateau phase until 2019 and subsequent contraction. Our study also supports that most mutations fixed during equine-like G3P[8] evolution were synonymous, suggesting that adaptive evolution was not an important driving force during viral dissemination in humans, potentially increasing its susceptibility to acquired immunity. This research emphasizes the need for comprehensive rotavirus genomic surveillance that allows close monitoring of its ever-shifting composition and informs more effective public health policies.IMPORTANCEOur original article demonstrated the origin and spread in a short time of equine-like G3P[8] in Brazil and the world. Due to its segmented genome, it allows numerous mechanisms including genetic drift and reassortment contribute substantially to the genetic diversity of rotavirus. Although the effectiveness and increasing implementation of vaccination have not been questioned, a matter of concern is its impact on the emergence of escape mutants or even the spread of unusual strains of zoonotic transmission that could drive epidemic patterns worldwide. This research emphasizes the need for comprehensive rotavirus genomic surveillance, which could facilitate the formulation of public policies aimed at preventing and mitigating its transmission.


Asunto(s)
Infecciones por Rotavirus , Rotavirus , Animales , Caballos/genética , Humanos , Rotavirus/genética , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/veterinaria , Infecciones por Rotavirus/genética , Brasil/epidemiología , Filogenia , Teorema de Bayes , Genoma Viral , Genotipo
5.
Microbiol Spectr ; 12(3): e0383123, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315011

RESUMEN

The SARS-CoV-2 XBB is a group of highly immune-evasive lineages of the Omicron variant of concern that emerged by recombining BA.2-descendent lineages and spread worldwide during 2023. In this study, we combine SARS-CoV-2 genomic data (n = 11,065 sequences) with epidemiological data of severe acute respiratory infection (SARI) cases collected in Brazil between October 2022 and July 2023 to reconstruct the space-time dynamics and epidemiologic impact of XBB dissemination in the country. Our analyses revealed that the introduction and local emergence of lineages carrying convergent mutations within the Spike protein, especially F486P, F456L, and L455F, propelled the spread of XBB* lineages in Brazil. The average relative instantaneous reproduction numbers of XBB* + F486P, XBB* + F486P + F456L, and XBB* + F486P + F456L + L455F lineages in Brazil were estimated to be 1.24, 1.33, and 1.48 higher than that of other co-circulating lineages (mainly BQ.1*/BE*), respectively. Despite such a growth advantage, the dissemination of these XBB* lineages had a reduced impact on Brazil's epidemiological scenario concerning previous Omicron subvariants. The peak number of SARI cases from SARS-CoV-2 during the XBB wave was approximately 90%, 80%, and 70% lower than that observed during the previous BA.1*, BA.5*, and BQ.1* waves, respectively. These findings revealed the emergence of multiple XBB lineages with progressively increasing growth advantage, yet with relatively limited epidemiological impact in Brazil throughout 2023. The XBB* + F486P + F456L + L455F lineages stand out for their heightened transmissibility, warranting close monitoring in the months ahead. IMPORTANCE: Brazil was one the most affected countries by the SARS-CoV-2 pandemic, with more than 700,000 deaths by mid-2023. This study reconstructs the dissemination of the virus in the country in the first half of 2023, a period characterized by the dissemination of descendants of XBB.1, a recombinant of Omicron BA.2 lineages evolved in late 2022. The analysis supports that XBB dissemination was marked by the continuous emergence of indigenous lineages bearing similar mutations in key sites of their Spike protein, a process followed by continuous increments in transmissibility, and without repercussions in the incidence of severe cases. Thus, the results suggest that the epidemiological impact of the spread of a SARS-CoV-2 variant is influenced by an intricate interplay of factors that extend beyond the virus's transmissibility alone. The study also underlines the need for SARS-CoV-2 genomic surveillance that allows the monitoring of its ever-shifting composition.


Asunto(s)
COVID-19 , Humanos , Brasil/epidemiología , COVID-19/epidemiología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
6.
Nat Commun ; 14(1): 2048, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041143

RESUMEN

The SARS-CoV-2 variants of concern (VOCs) Delta and Omicron spread globally during mid and late 2021, respectively. In this study, we compare the dissemination dynamics of these VOCs in the Amazonas state, one of Brazil's most heavily affected regions. We sequenced the virus genome from 4128 patients collected in Amazonas between July 1st, 2021, and January 31st, 2022, and investigated the viral dynamics using a phylodynamic approach. The VOCs Delta and Omicron BA.1 displayed similar patterns of phylogeographic spread but different epidemic dynamics. The replacement of Gamma by Delta was gradual and occurred without an upsurge of COVID-19 cases, while the rise of Omicron BA.1 was extremely fast and fueled a sharp increase in cases. Thus, the dissemination dynamics and population-level impact of new SARS-CoV-2 variants introduced in the Amazonian population after mid-2021, a setting with high levels of acquired immunity, greatly vary according to their viral phenotype.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Brasil , Inmunidad Adaptativa
7.
Sci Rep ; 13(1): 7306, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147348

RESUMEN

The rapid spread of the SARS-CoV-2 Variant of Concern (VOC) Gamma in Amazonas during early 2021 fueled a second large COVID-19 epidemic wave and raised concern about the potential role of reinfections. Very few cases of reinfection associated with the VOC Gamma have been reported to date, and their potential impact on clinical, immunological, and virological parameters remains largely unexplored. Here we describe 25 cases of SARS-CoV-2 reinfection in Brazil. SARS-CoV-2 genomic analysis confirmed that individuals were primo-infected with distinct viral lineages between March and December 2020 (B.1.1, B.1.1.28, B.1.1.33, B.1.195, and P.2) and reinfected with the VOC Gamma between 3 to 12 months after primo-infection. We found a similar mean cycle threshold (Ct) value and limited intra-host viral diversity in both primo-infection and reinfection samples. Sera of 14 patients tested 10-75 days after reinfection displayed detectable neutralizing antibodies (NAb) titers against SARS-CoV-2 variants that circulated before (B.1.*), during (Gamma), and after (Delta and Omicron) the second epidemic wave in Brazil. All individuals had milder or no symptoms after reinfection, and none required hospitalization. These findings demonstrate that individuals reinfected with the VOC Gamma may display relatively high RNA viral loads at the upper respiratory tract after reinfection, thus contributing to onward viral transmissions. Despite this, our study points to a low overall risk of severe Gamma reinfections, supporting that the abrupt increase in hospital admissions and deaths observed in Amazonas and other Brazilian states during the Gamma wave was mostly driven by primary infections. Our findings also indicate that most individuals analyzed developed a high anti-SARS-CoV-2 NAb response after reinfection that may provide some protection against reinfection or disease by different SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Brasil/epidemiología , COVID-19/epidemiología , Diversidad de Anticuerpos , Rayos gamma , Reinfección , Gravedad del Paciente
8.
Viruses ; 14(12)2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36560771

RESUMEN

The study of HIV-1 transmission networks inferred from viral genetic data can be used to clarify important factors about the dynamics of HIV-1 transmission, such as network growth rate and demographic composition. In Brazil, HIV transmission has been stable since the early 2000s and the study of transmission clusters can provide valuable data to understand the drivers of virus spread. In this work, we analyzed a nation-wide database of approximately 53,000 HIV-1 nucleotide pol sequences sampled from genotyped patients from 2008-2017. Phylogenetic trees were reconstructed for the HIV-1 subtypes B, C and F1 in Brazil and transmission clusters were inferred by applying genetic distances thresholds of 1.5%, 3.0% and 4.5%, as well as high (>0.9) cluster statistical support. An odds ratio test revealed that young men (15-24 years) and individuals with more years of education presented higher odds to cluster. The assortativity coefficient revealed that individuals with similar demographic features tended to cluster together, with emphasis on features, such as place of residence and age. We also observed that assortativity weakens as the genetic distance threshold increases. Our results indicate that the phylogenetic clusters identified here are likely representative of the contact networks that shape HIV transmission, and this is a valuable tool even in sites with low sampling density, such as Brazil.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Masculino , Humanos , VIH-1/genética , Brasil/epidemiología , Filogenia , Genotipo , Análisis por Conglomerados
9.
Front Microbiol ; 13: 835443, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35330760

RESUMEN

The HIV-1 epidemic in the Amazonas state, as in most of Brazil, is dominated by subtype B. The state, nonetheless, is singular for its significant co-circulation of the variants BCAR, which can mostly be found in the Caribbean region, and BPAN, a clade that emerged in the United States and aggregates almost the totality of subtype B infections world-wide. The Amazonian HIV-1 epidemic provides a unique scenario to compare the epidemic potential of BPAN and BCAR clades spreading in the same population. To reconstruct the spatiotemporal dynamic and demographic history of both subtype B lineages circulating in Amazonas, we analyzed 1,272 HIV-1 pol sequences sampled in that state between 2009 and 2018. Our phylogeographic analyses revealed that while most BCAR infections resulted from a single successful founder event that took place in the Amazonas state around the late 1970s, most BPAN infections resulted from the expansion of multiple clusters seeded in the state since the late 1980s. Our data support the existence of at least four large clusters of the pandemic form in Amazonas, two of them nested in Brazil's largest known subtype B cluster (BBR-I), and two others resulting from new introductions detected here. The reconstruction of the demographic history of the most prevalent BPAN (n = 4) and BCAR (n = 1) clades identified in Amazonas revealed that all clades displayed a continuous expansion [effective reproductive number (R e) > 1] until most recent times. During the period of co-circulation from the late 1990s onward, the Re of Amazonian BPAN and BCAR clusters behaved quite alike, fluctuating between 2.0 and 3.0. These findings support that the BCAR and BPAN variants circulating in the Brazilian state of Amazonas displayed different evolutionary histories, but similar epidemic trajectories and transmissibility over the last two decades, which is consistent with the notion that both subtype B variants display comparable epidemic potential. Our findings also revealed that despite significant advances in the treatment of HIV infections in the Amazonas state, BCAR and BPAN variants continue to expand and show no signs of the epidemic stabilization observed in other parts of the country.

10.
Virology ; 577: 74-83, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36323046

RESUMEN

Rotavirus A (RVA) is a major cause of acute gastroenteritis (AGE) in children worldwide. We report unusual RVA G12P[6] and G6P[8] strains isolated from fecal samples from Brazilian children hospitalized for AGE. The characterized RVA have genome segments backbone: G12-P[6]/ G6-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 of DS-1-like genogroup. Our study describes the first identification of G6P[8], a DS-1-like genogroup strain. Nucleotide analysis of VP7 and VP4 genes revealed that all G12 Brazilian strains clustered into the sub-lineages IIIB, mostly associated with P[6] lineage I. Additionally, our G6 lineage I strains were closely related to German G6 genotypes, bound with P[8] lineage III, differing from both vaccine strains. The comparative sequence analysis of our strains with vaccine strains revealed amino acid substitutions located in immunodominant regions of VP7 and VP4 proteins. Continuous monitoring of RVA genotypes is essential to evaluate the impact of vaccination on the dynamic nature of RVA evolution.

11.
Microbiol Spectr ; 10(5): e0264121, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36000897

RESUMEN

The SARS-CoV-2 variant of concern (VOC) Delta was first detected in India in October 2020. The first imported cases of the Delta variant in Brazil were identified in April 2021 in the southern region, followed by more cases in different regions during the following months. By early September 2021, Delta was already the dominant variant in the southeastern (87%), southern (73%), and northeastern (52%) Brazilian regions. This study aimed to understand the spatiotemporal dissemination dynamics of Delta in Brazil. To this end, we employed a combination of maximum likelihood (ML) and Bayesian methods to reconstruct the evolutionary relationship of 2,264 VOC Delta complete genomes (482 from this study) recovered across 21 of the 27 Brazilian federal units. Our phylogeographic analyses identified three major transmission clusters of Delta in Brazil. The clade BR-I (n = 1,560) arose in Rio de Janeiro in late April 2021 and was the major cluster behind the dissemination of the VOC Delta in the southeastern, northeastern, northern, and central-western regions. The AY.101 lineage (n = 207) that arose in the Paraná state in late April 2021 and aggregated the largest fraction of sampled genomes from the southern region. Lastly, the AY.46.3 lineage emerged in Brazil in the São Paulo state in early June 2021 and remained mostly restricted to this state. In the rapid turnover of viral variants characteristic of the SARS-CoV-2 pandemic, Brazilian regions seem to occupy different stages of an increasing prevalence of the VOC Delta in their epidemic profiles. This process demands continuous genomic and epidemiological surveillance toward identifying and mitigating new introductions, limiting their dissemination, and preventing the establishment of more significant outbreaks in a population already heavily affected by the COVID-19 pandemic. IMPORTANCE Amid the SARS-CoV-2 continuously changing epidemic profile, this study details the space-time dynamics of the emergence of the Delta lineage across Brazilian territories, pointing out its multiple introductions in the country and its most prevalent sublineages. Some of these sublineages have their emergence, alongside their genomic composition and geographic distribution, detailed here for the first time. A special focus is given to the emergence process of Delta outside the country's south and southeast regions, the most populated and subjects of most published SARS-CoV-2 studies in Brazil. In summary, the study allows a better comprehension of the evolution process of a SARS-CoV-2 lineage that would be associated with a significant recrudescence of the pandemic in Brazil.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Brasil/epidemiología , Pandemias , COVID-19/epidemiología , Teorema de Bayes
12.
Front Med (Lausanne) ; 9: 839389, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308526

RESUMEN

The present study investigated a SARS-CoV-2 infection in placenta and fetal samples from an early pregnancy miscarriage in Midwest Brazil. The Gamma variant was isolated and fully sequenced from the placenta sample, but not from fetal samples. Our findings highlight potential adverse perinatal outcomes caused by SARS-CoV-2 Gamma infection during pregnancy.

13.
Int J Infect Dis ; 114: 58-61, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34757006

RESUMEN

We describe a case of prolonged COVID-19 caused by the SARS-CoV-2 Gamma variant in a fully vaccinated healthcare worker, 387 days after an infection caused by lineage B.1.1.33. Infections were confirmed by whole-genome sequencing and corroborated by the detection of neutralizing antibodies in convalescent serum samples. Considering the permanent exposure of this healthcare worker to SARS-CoV-2, the waning immunity after the first infection, the low efficacy of the inactivated vaccine at preventing COVID-19, the immune escape of the Gamma variant (VOC), and the burden of post-COVID syndrome, this individual would have benefited from an additional dose of a heterologous vaccine.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brasil , COVID-19/complicaciones , COVID-19/terapia , Humanos , Inmunización Pasiva , Reinfección , Vacunas de Productos Inactivados , Sueroterapia para COVID-19 , Síndrome Post Agudo de COVID-19
14.
AIDS ; 35(6): 979-984, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33470610

RESUMEN

OBJECTIVE: The aim of this study was to understand the transmission dynamics of the HIV-1 subtype B epidemic in French Guiana and the factors that shaped the expansion of major phylogenetic transmission clusters. DESIGN: HIV-1 subtype B pol sequences with associated epidemiological data obtained from 703 treatment-naive patients living in French Guiana between 2006 and 2012, which correspond to 91% of all HIV cases diagnosed in that period, were employed in this study. METHODS: Maximum likelihood and Bayesian methods were used to construct phylogenetic trees, identify transmission clusters and estimate intervals between successive infections. Statistical analysis was performed to evaluate epidemiological characteristics associated with cluster membership. RESULTS: HIV-1 subtype B pol sequences from French Guiana were distributed in 10 large/medium transmission clades (LMTC, n > 10, 55%), 19 small transmission clades (STC, n = 3-8, 10%), 36 dyads (10%) or were nonclustered (25%). The rate of clustering did not differ by sex or clinical stage, but sex workers, crack-cocaine users, young individuals (15-20 years) and nationals or migrants from neighbouring South American countries were more likely to cluster within LMTC than individuals from other groups. We estimated that 53-63% of immigrants were infected after the arrival in French Guiana and that 50% of HIV transmissions within LMTC occurred during the first 2 years after infection. CONCLUSION: These findings reinforce the notion that high-risk sexual behaviours among young individuals and migrants (postmigration) combined with late HIV diagnosis are key drivers of onward dissemination of major HIV transmission clusters in French Guiana.


Asunto(s)
Infecciones por VIH , VIH-1 , Teorema de Bayes , Guyana Francesa/epidemiología , Infecciones por VIH/epidemiología , VIH-1/genética , Humanos , Filogenia , América del Sur
15.
Sci Rep ; 11(1): 15842, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349153

RESUMEN

HIV-1 has diversified into several subtypes and recombinant forms that are heterogeneously spread around the world. Understanding the distribution of viral variants and their temporal dynamics can help to design vaccines and monitor changes in viral transmission patterns. Brazil has one of the largest HIV-1 epidemics in the western-world and the molecular features of the virus circulating in the country are still not completely known. Over 50,000 partial HIV-1 genomes sampled between 2008 and 2017 by the Brazilian genotyping network (RENAGENO) were analyzed. Sequences were filtered by quality, duplicate sequences per patient were removed and subtyping was performed with online tools and molecular phylogeny. Association between patients' demographic data and subtypes were performed by calculating the relative risk in a multinomial analysis and trends in subtype prevalence were tested by Pearson correlation. HIV-1B was found to be the most prevalent subtype throughout the country except in the south, where HIV-1C prevails. An increasing trend in the proportion of HIV-1C and F1 was observed in several regions of the country, while HIV-1B tended to decrease. Men and highly educated individuals were more frequently infected by HIV-1B and non-B variants were more prevalent among women with lower education. Our results suggest that socio-demographic factors partially segregate HIV-1 diversity in Brazil while shaping viral transmission networks. Historical events could explain a preferential circulation of HIV-1B among men who have sex with men (MSM) and non-B variants among heterosexual individuals. In view of an increasing male/female ratio of AIDS cases in Brazil in the last 10-15 years, the decrease of HIV-1B prevalence is surprising and suggests a greater penetrance of non-B subtypes in MSM transmission chains.


Asunto(s)
Infecciones por VIH/epidemiología , VIH-1/clasificación , VIH-1/genética , Filogenia , Adolescente , Adulto , Brasil/epidemiología , Femenino , Genotipo , Infecciones por VIH/sangre , Infecciones por VIH/virología , Seropositividad para VIH , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Adulto Joven
16.
Front Microbiol ; 12: 653986, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122369

RESUMEN

Uruguay is one of the few countries in the Americas that successfully contained the coronavirus disease 19 (COVID-19) epidemic during the first half of 2020. Nevertheless, the intensive human mobility across the dry border with Brazil is a major challenge for public health authorities. We aimed to investigate the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains detected in Uruguayan localities bordering Brazil as well as to measure the viral flux across this ∼1,100 km uninterrupted dry frontier. Using complete SARS-CoV-2 genomes from the Uruguayan-Brazilian bordering region and phylogeographic analyses, we inferred the virus dissemination frequency between Brazil and Uruguay and characterized local outbreak dynamics during the first months (May-July) of the pandemic. Phylogenetic analyses revealed multiple introductions of SARS-CoV-2 Brazilian lineages B.1.1.28 and B.1.1.33 into Uruguayan localities at the bordering region. The most probable sources of viral strains introduced to Uruguay were the Southeast Brazilian region and the state of Rio Grande do Sul. Some of the viral strains introduced in Uruguayan border localities between early May and mid-July were able to locally spread and originated the first outbreaks detected outside the metropolitan region. The viral lineages responsible for Uruguayan urban outbreaks were defined by a set of between four and 11 mutations (synonymous and non-synonymous) with respect to the ancestral B.1.1.28 and B.1.1.33 viruses that arose in Brazil, supporting the notion of a rapid genetic differentiation between SARS-CoV-2 subpopulations spreading in South America. Although Uruguayan borders have remained essentially closed to non-Uruguayan citizens, the inevitable flow of people across the dry border with Brazil allowed the repeated entry of the virus into Uruguay and the subsequent emergence of local outbreaks in Uruguayan border localities. Implementation of coordinated bi-national surveillance systems is crucial to achieve an efficient control of the SARS-CoV-2 spread across this kind of highly permeable borderland regions around the world.

17.
Nat Med ; 27(7): 1230-1238, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34035535

RESUMEN

The northern state of Amazonas is among the regions in Brazil most heavily affected by the COVID-19 epidemic and has experienced two exponentially growing waves, in early and late 2020. Through a genomic epidemiology study based on 250 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from different Amazonas municipalities sampled between March 2020 and January 2021, we reveal that the first exponential growth phase was driven mostly by the dissemination of lineage B.1.195, which was gradually replaced by lineage B.1.1.28 between May and June 2020. The second wave coincides with the emergence of the variant of concern (VOC) P.1, which evolved from a local B.1.1.28 clade in late November 2020 and replaced the parental lineage in <2 months. Our findings support the conclusion that successive lineage replacements in Amazonas were driven by a complex combination of variable levels of social distancing measures and the emergence of a more transmissible VOC P.1 virus. These data provide insights to understanding the mechanisms underlying the COVID-19 epidemic waves and the risk of dissemination of SARS-CoV-2 VOC P.1 in Brazil and, potentially, worldwide.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Genoma Viral/genética , SARS-CoV-2/genética , Adulto , Brasil/epidemiología , Prueba de Ácido Nucleico para COVID-19 , Femenino , Humanos , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Filogenia , Filogeografía , Análisis Espacio-Temporal
18.
Viruses ; 13(9)2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34578382

RESUMEN

Uruguay controlled the viral dissemination during the first nine months of the SARS-CoV-2 pandemic. Unfortunately, towards the end of 2020, the number of daily new cases exponentially increased. Herein, we analyzed the country-wide genetic diversity of SARS-CoV-2 between November 2020 and April 2021. We identified that the most prevalent viral variant during the first epidemic wave in Uruguay (December 2020-February 2021) was a B.1.1.28 sublineage carrying Spike mutations Q675H + Q677H, now designated as P.6, followed by lineages P.2 and P.7. P.6 probably arose around November 2020, in Montevideo, Uruguay's capital department, and rapidly spread to other departments, with evidence of further local transmission clusters; it also spread sporadically to the USA and Spain. The more efficient dissemination of lineage P.6 with respect to P.2 and P.7 and the presence of mutations (Q675H and Q677H) in the proximity of the key cleavage site at the S1/S2 boundary suggest that P.6 may be more transmissible than other lineages co-circulating in Uruguay. Although P.6 was replaced by the variant of concern (VOC) P.1 as the predominant lineage in Uruguay since April 2021, the monitoring of the concurrent emergence of Q675H + Q677H in VOCs should be of worldwide interest.


Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/transmisión , Genoma Viral , Humanos , Mutación , Filogeografía , Estudios Retrospectivos , SARS-CoV-2/patogenicidad , Uruguay
19.
PLoS One ; 15(9): e0238995, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32960906

RESUMEN

The Human Immunodeficiency Virus Type I (HIV-1) subtype B comprises approximately 10% of all HIV infections in the world. The HIV-1 subtype B epidemic comprehends a pandemic variant (named BPANDEMIC) disseminated worldwide and non-pandemic variants (named BCAR) that are mostly restricted to the Caribbean. The goal of this work was the identification of amino acid signatures (AAs) characteristic to the BCAR and BPANDEMIC variants. To this end, we analyzed HIV-1 subtype B full-length (n = 486) and partial (n = 814) genomic sequences from the Americas classified within the BCAR and BPANDEMIC clades and reconstructed the sequences of their most recent common ancestors (MRCA). Analysis of contemporary HIV-1 sequences revealed 13 AAs between BCAR and BPANDEMIC variants (four on Gag, three on Pol, three on Rev, and one in Vif, Vpu, and Tat) of which only two (one on Gag and one on Pol) were traced to the MRCA. All AAs correspond to polymorphic sites located outside essential functional proteins domains, except the AAs in Tat. The absence of stringent AAs inherited from their ancestors between modern BCAR and BPANDEMIC variants support that ecological factors, rather than viral determinants, were the main driving force behind the successful spread of the BPANDEMIC strain.


Asunto(s)
Aminoácidos/genética , VIH-1/genética , Secuencias de Aminoácidos , Infecciones por VIH/epidemiología , Seropositividad para VIH/epidemiología , VIH-1/patogenicidad , Humanos , Pandemias , Filogenia , Análisis Espacio-Temporal
20.
Viruses ; 11(10)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581471

RESUMEN

Non-pandemic variants of the Human Immunodeficiency Virus Type 1 (HIV-1) subtype B accounts for a significant fraction of HIV infections in several Caribbean islands, Northeastern South American countries and the Northern Brazilian states of Roraima and Amazonas. In this paper, we used a comprehensive dataset of HIV-1 subtype B pol sequences sampled in Amazonas and Roraima between 2007 and 2017 to reconstruct the phylogeographic and demographic dynamics of the major HIV-1 subtype B non-pandemic Brazilian lineage, designated as BCAR-BR-I. Our analyses revealed that its origin could be traced to one of many viral introductions from French Guiana and Guyana into Northern Brazil, which probably occurred in the state of Amazonas around the late 1970s. The BCAR-BR-I clade was rapidly disseminated from Amazonas to Roraima, and the epidemic grew exponentially in these Northern Brazilian states during the 1980s and 1990s, coinciding with a period of economic and fast population growth in the region. The spreading rate of the BCAR-BR-I clade, however, seems to have slowed down since the early 2000s, despite the continued expansion of the HIV-1 epidemic in this region in the last decade.


Asunto(s)
Infecciones por VIH/epidemiología , Infecciones por VIH/virología , VIH-1/clasificación , Filogenia , Brasil/epidemiología , Región del Caribe/epidemiología , Epidemias , Evolución Molecular , Humanos , Filogeografía , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA