Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Physiol ; 13: 948378, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267581

RESUMEN

Trace mineral minerals Zn, Cu, and Mn play important roles in breeder production and progeny performance. The objective of this study was to determine maternal supplementation of trace mineral minerals on breeder production and progeny growth and development. A total of 540 broiler breeders, Cobb 500 (Slow feathering; 0-66 weeks old) were assigned to one of three treatment groups with the same basal diet and three different supplemental trace minerals: ITM-inorganic trace minerals in sulfates: 100, 16, and 100 ppm of Zn, Cu, and Mn respectively; MMHAC -mineral methionine hydroxy analog chelate: 50, 8, and 50 ppm of bis-chelated MINTREX®Zn, Cu and Mn (Novus International, Inc.), and TMAAC - trace minerals amino acid complex: 50, 8, and 50 ppm of Zn, Cu, and Mn. At 28 weeks of age, eggs from breeder treatments were hatched for progeny trial, 10 pens with 6 males and 6 female birds per pen were fed a common diet with ITM for 45 days. Breeder production, egg quality, progeny growth performance, mRNA expression of gut health associated genes in breeder and progeny chicks were measured. Data were analyzed by one-way ANOVA; means were separated by Fisher's protected LSD test. A p-Value ≤ 0.05 was considered statistically different and 0.1 was considered numerical trend. Breeders on ITM treatment had higher (p < 0.05) body weight (BW), weight gain and lower (p < 0.05) feed conversion ratio (FCR) from 0 to 10 weeks, when compared to birds fed MMHAC. MMHAC significantly improved egg mass by 3 g (p < 0.05) and FCR by 34 points (0.05 < p < 0.1) throughout the reproductive period (26-66 weeks) in comparison to ITM. MMHAC improved (p < 0.01) egg yolk color versus (vs.) ITM and TMAAC in all periods, except 28 weeks, increased (p < 0.01) eggshell thickness and resistance vs. TMAAC at 58 weeks, and reduced (p < 0.05) jejunal NF-κB gene expression vs. TMAAC at 24 weeks. There was a significant reduction in tibial dry matter weight, Seedor index and resistance for the breeders that received MMHAC and/or TMAAC when compared to ITM at 18 weeks. Lower seedor index but numerically wider tibial circumference was seen in hens fed MMHAC at 24 weeks, and wider tibial circumference but lower tibial resistance in hens fed TMAAC at 66 weeks. Maternal supplementation of MMHAC in breeder hens increased (p < 0.0001) BW vs. ITM and TMAAC at hatching, reduced (p < 0.05) feed intake vs. ITM at d14 and d28, and improved (p < 0.01) FCR and performance index vs. TMAAC at d28, reduced (p < 0.01) NF-κB gene expression and increased (p < 0.05) A20 gene expression vs. TMAAC on d0 and vs. ITM on d14, reduced (p < 0.05) TLR2 gene expression vs. ITM on d0 and vs. TMAAC on d14, increased (p < 0.05) MUC2 gene expression vs. both ITM and TMAAC on d45 in progeny jejunum. Overall, these results suggest that supplementation with lower levels of MHA-chelated trace minerals improved breeder production and egg quality and reduced breeder jejunal inflammation while maintaining tibial development in comparison to those receiving higher inorganic mineral supplementation, and it also carried over the benefits to progeny with better growth performance, less jejunal inflammation and better innate immune response and gut barrier function in comparison to ITM and/or TMAAC.

2.
J Anim Sci ; 97(10): 4242-4247, 2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31581297

RESUMEN

Two performance studies were conducted to investigate the effects of 3 different sources of Cu on production parameters of piglets. A total of 256 piglets weaned at 24 ± 2 d were randomly allocated into 4 treatments with 10 or 8 replicates per treatment of 4 or 3 piglets per pen in Exp. 1 and 2, respectively. The experimental period was divided into 3 feeding phases: Phase 1 (24 to 35 d), Phase 2 (36 to 49 d), and Phase 3 (50 to 70 d). Treatments included a Control group (fed 10 mg/kg of Cu from CuSO4), a group fed 160 mg/kg of either CuSO4 (CuSO4-160) or tri-basic copper chloride (TBCC), and a group fed Cu methionine hydroxy analogue chelated (Cu-MHAC) at 150, 80, and 50 mg/kg in Phases 1, 2, and 3, respectively. The methionine value of Cu-MHAC was accounted during diet formulation to achieve the same levels of methionine across treatments. Phases 1 and 2 diets contained 2,200 and 1,500 ppm of ZnO, respectively; and antibiotics were used as growth promoters. Performance parameters were analyzed as completely randomized block design, in which each experiment was considered as a block. In trial 2, blood serum and mucosal samples, from the fundic region of the stomach, were collected from 1 piglet per replicate at day 70 and tested for serum growth hormone levels (GH) and ghrelin mRNA expression, respectively. The contrast between Cu-MHAC vs. CuSO4-160 + TBCC showed that piglets fed Cu-MHAC exhibited better feed conversion ratio (FCR) in all feeding phases compared with feeding inorganic Cu (P < 0.05). Overall, feeding Cu-MHAC improved body weight (BW), BW gain, feed intake (FI), and FCR vs. Control diet fed piglets; yet, it improved BW and FCR vs. TBCC fed piglets, and improved BW, BW gain, and FI vs. CuSO4-160 fed piglets (P < 0.05). Feeding TBCC promoted similar performance than feeding CuSO4-160, regardless of age (P > 0.05). Both ghrelin expression and growth hormone serum levels were significantly increased by feeding Cu-MHAC vs. Control diet fed animals (P < 0.01). Feeding CuSO4-160 upregulated ghrelin expression vs. Control (P < 0.01) while GH serum levels and ghrelin expression did no change by feeding TBCC compared with Control diet fed animals (P > 0.05). It was concluded that feeding Cu-MHAC at the levels tested herein can improve growth performance of piglets beyond feeding 160 ppm of either CuSO4 or TBCC, which may be partially explained by the increased expression of ghrelin and GH serum levels.


Asunto(s)
Alimentación Animal/análisis , Cobre/administración & dosificación , Suplementos Dietéticos/análisis , Ghrelina/genética , Hormona del Crecimiento/sangre , Porcinos/fisiología , Animales , Peso Corporal/efectos de los fármacos , Dieta/veterinaria , Femenino , Masculino , Metionina/análogos & derivados , Metionina/química , ARN Mensajero/genética , Distribución Aleatoria , Estómago/fisiología , Porcinos/genética , Porcinos/crecimiento & desarrollo , Destete , Aumento de Peso/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA