Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(15): e2116576119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377807

RESUMEN

In studies of vision and audition, stimuli can be chosen to span the visible or audible spectrum; in olfaction, the axes and boundaries defining the analogous odorous space are unknown. As a result, the population of olfactory space is likewise unknown, and anecdotal estimates of 10,000 odorants have endured. The journey a molecule must take to reach olfactory receptors (ORs) and produce an odor percept suggests some chemical criteria for odorants: a molecule must 1) be volatile enough to enter the air phase, 2) be nonvolatile and hydrophilic enough to sorb into the mucous layer coating the olfactory epithelium, 3) be hydrophobic enough to enter an OR binding pocket, and 4) activate at least one OR. Here, we develop a simple and interpretable quantitative model that reliably predicts whether a molecule is odorous or odorless based solely on the first three criteria. Applying our model to a database of all possible small organic molecules, we estimate that at least 40 billion possible compounds are odorous, six orders of magnitude larger than current estimates of 10,000. With this model in hand, we can define the boundaries of olfactory space in terms of molecular volatility and hydrophobicity, enabling representative sampling of olfactory stimulus space.


Asunto(s)
Odorantes , Olfato , Compuestos Orgánicos Volátiles , Animales , Humanos , Aprendizaje Automático , Modelos Teóricos , Receptores Odorantes , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/clasificación , Volatilización
2.
Chem Senses ; 44(1): 33-40, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30351347

RESUMEN

TAS2R38 is a human bitter receptor gene with a common but inactive allele; people homozygous for the inactive form cannot perceive low concentrations of certain bitter compounds. The frequency of the inactive and active forms of this receptor is nearly equal in many human populations, and heterozygotes with 1 copy of the active form and 1 copy of the inactive form have the most common diplotype. However, even though they have the same genotype, heterozygotes differ markedly in their perception of bitterness, perhaps in part because of differences in TAS2R38 mRNA expression. Other tissues express this receptor too, including the nasal sinuses, where it contributes to pathogen defense. We, therefore, wondered whether heterozygous people had a similar wide range of TAS2R38 mRNA in sinonasal tissue and whether those with higher TAS2R38 mRNA expression in taste tissue were similarly high expressers in nasal tissue. To that end, we measured gene expression by quantitative PCR in taste and sinonasal tissue and found that expression abundance in one tissue was not related to the other. We confirmed the independence of expression in other tissue pairs expressing TAS2R38 mRNA, such as pancreas and small intestine, using autopsy data from the Genotype-Tissue Expression project (although people with high expression of TAS2R38 mRNA in colon also tended to have higher expression in the small intestine). Thus, taste tissue TAS2R38 mRNA expression among heterozygotes is unlikely to predict expression in other tissues, perhaps reflecting tissue-dependent function, and hence regulation, of this protein.


Asunto(s)
ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Alelos , Femenino , Expresión Génica , Genotipo , Heterocigoto , Humanos , Masculino , Cavidad Nasal/metabolismo , Polimorfismo de Nucleótido Simple , Receptores Acoplados a Proteínas G/genética , Gusto/fisiología , Lengua/metabolismo
3.
Mamm Genome ; 29(5-6): 325-343, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29737391

RESUMEN

To fine map a mouse QTL for lean body mass (Burly1), we used information from intercross, backcross, consomic, and congenic mice derived from the C57BL/6ByJ (host) and 129P3/J (donor) strains. The results from these mapping populations were concordant and showed that Burly1 is located between 151.9 and 152.7 Mb (rs33197365 to rs3700604) on mouse chromosome 2. The congenic region harboring Burly1 contains 26 protein-coding genes, 11 noncoding RNA elements (e.g., lncRNA), and 4 pseudogenes, with 1949 predicted functional variants. Of the protein-coding genes, 7 have missense variants, including genes that may contribute to lean body weight, such as Angpt41, Slc52c3, and Rem1. Lean body mass was increased by the B6-derived variant relative to the 129-derived allele. Burly1 influenced lean body weight at all ages but not food intake or locomotor activity. However, congenic mice with the B6 allele produced more heat per kilogram of lean body weight than did controls, pointing to a genotype effect on lean mass metabolism. These results show the value of integrating information from several mapping populations to refine the map location of body composition QTLs and to identify a short list of candidate genes.


Asunto(s)
Mapeo Cromosómico , Cromosomas de los Mamíferos , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Delgadez/genética , Factores de Edad , Animales , Mapeo Cromosómico/métodos , Cruzamientos Genéticos , Metabolismo Energético/genética , Femenino , Estudios de Asociación Genética , Variación Genética , Genotipo , Masculino , Ratones , Delgadez/metabolismo
4.
Curr Biol ; 31(13): 2809-2818.e3, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33957076

RESUMEN

Odor perception in non-humans is poorly understood. Here, we generated the most comprehensive mouse olfactory ethological atlas to date, consisting of behavioral responses to a diverse panel of 73 odorants, including 12 at multiple concentrations. These data revealed that mouse behavior is incredibly diverse and changes in response to odorant identity and concentration. Using only behavioral responses observed in other mice, we could predict which of two odorants was presented to a held-out mouse 82% of the time. Considering all 73 possible odorants, we could uniquely identify the target odorant from behavior on the first try 20% of the time and 46% within five attempts. Although mouse behavior is difficult to predict from human perception, they share three fundamental properties: first, odor valence parameters explained the highest variance of olfactory perception. Second, physicochemical properties of odorants can be used to predict the olfactory percept. Third, odorant concentration quantitatively and qualitatively impacts olfactory perception. These results increase our understanding of mouse olfactory behavior and how it compares to human odor perception and provide a template for future comparative studies of olfactory percepts among species.


Asunto(s)
Ascomicetos , Percepción Olfatoria , Animales , Ratones , Odorantes , Olfato/fisiología
5.
Physiol Behav ; 209: 112579, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31199938

RESUMEN

Many factors play a role in choosing what to eat or drink. We explored the role of sensation to explain these differences, drawing on consumer reviews for commercially available food products sold through an online retailer. We analyzed 393,568 unique food product reviews from Amazon customers with a total of 256,043 reviewers rating 67,553 products. Taste-associated words were mentioned more than words associated with price, food texture, customer service, nutrition, smell, or those referring to the trigeminal senses, e.g., "spicy". We computed the overall number of reviews that mentioned taste qualities: the word taste was mentioned in over 30% of the reviews (N = 142,768), followed by sweet (10.7%, N = 42,315), bitter (2.9%, N = 11,424), sour (2.1%, N = 8252) and salty (1.4%, N = 5688). We identified 38 phrases used to describe the evaluation of sweetness, finding that 'too sweet' was used in nearly 0.8% of the reviews and oversweetness was mentioned over 25 times more often than under-sweetness. We then focused on 'polarizing' products, those that elicited a wide difference of opinion (as measured by the ranges of the product ratings). Using the products that had more than 50 reviews, we identified the top 10 most polarizing foods and provide representative comments about the polarized taste experience of consumers. Overall, these results support the primacy of taste in real-world food ratings and individualized taste experience, such as whether a product is 'too sweet'. Analysis of consumer review data sets can provide information about purchasing decisions and customer sensory responses to particular commercially available products and represents a promising methodology for the emerging field of sensory nutrition.


Asunto(s)
Comportamiento del Consumidor , Alimentos , Fenómenos Fisiológicos de la Nutrición/fisiología , Sensación/fisiología , Gusto/fisiología , Animales , Industria de Alimentos , Preferencias Alimentarias , Humanos
6.
Sci Adv ; 5(7): eaax0396, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31392275

RESUMEN

The mammalian olfactory system displays species-specific adaptations to different ecological niches. To investigate the evolutionary dynamics of olfactory sensory neuron (OSN) subtypes across mammalian evolution, we applied RNA sequencing of whole olfactory mucosa samples from mouse, rat, dog, marmoset, macaque, and human. We find that OSN subtypes, representative of all known mouse chemosensory receptor gene families, are present in all analyzed species. Further, we show that OSN subtypes expressing canonical olfactory receptors are distributed across a large dynamic range and that homologous subtypes can be either highly abundant across all species or species/order specific. Highly abundant mouse and human OSN subtypes detect odorants with similar sensory profiles and sense ecologically relevant odorants, such as mouse semiochemicals or human key food odorants. Together, our results allow for a better understanding of the evolution of mammalian olfaction in mammals and provide insights into the possible functions of highly abundant OSN subtypes.


Asunto(s)
Evolución Biológica , Alimentos , Mamíferos/genética , Odorantes , Mucosa Olfatoria/metabolismo , Transcriptoma/genética , Animales , Perfilación de la Expresión Génica , Humanos , Ligandos , Masculino , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
7.
J Vis Exp ; (138)2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30176005

RESUMEN

The emerging importance of taste in medicine and biomedical research, and new knowledge about its genetic underpinnings, has motivated us to supplement classic taste-testing methods in two ways. First, we explain how to do a brief assessment of the mouth, including the tongue, to ensure that taste papillae are present and to note evidence of relevant disease. Second, we draw on genetics to validate taste test data by comparing reports of perceived bitterness intensity and inborn receptor genotypes. Discordance between objective measures of genotype and subjective reports of taste experience can identify data collection errors, distracted subjects or those who have not understood or followed instructions. Our expectation is that fast and valid taste tests may persuade researchers and clinicians to assess taste regularly, making taste testing as common as testing for hearing and vision. Finally, because many tissues of the body express taste receptors, taste responses may provide a proxy for tissue sensitivity elsewhere in the body and, thereby, serve as a rapid, point-of-care test to guide diagnosis and a research tool to evaluate taste receptor protein function.


Asunto(s)
Papilas Gustativas/fisiología , Gusto/fisiología , Lengua/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
8.
PLoS One ; 12(12): e0188972, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29194435

RESUMEN

An average mouse in midlife weighs between 25 and 30 g, with about a gram of tissue in the largest adipose depot (gonadal), and the weight of this depot differs between inbred strains. Specifically, C57BL/6ByJ mice have heavier gonadal depots on average than do 129P3/J mice. To understand the genetic contributions to this trait, we mapped several quantitative trait loci (QTLs) for gonadal depot weight in an F2 intercross population. Our goal here was to fine-map one of these QTLs, Adip20 (formerly Adip5), on mouse chromosome 9. To that end, we analyzed the weight of the gonadal adipose depot from newly created congenic strains. Results from the sequential comparison method indicated at least four rather than one QTL; two of the QTLs were less than 0.5 Mb apart, with opposing directions of allelic effect. Different types of evidence (missense and regulatory genetic variation, human adiposity/body mass index orthologues, and differential gene expression) implicated numerous candidate genes from the four QTL regions. These results highlight the value of mouse congenic strains and the value of this sequential method to dissect challenging genetic architecture.


Asunto(s)
Adiposidad/genética , Sitios de Carácter Cuantitativo , Animales , Femenino , Variación Genética , Masculino , Ratones
9.
PLoS One ; 10(11): e0141494, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26551037

RESUMEN

Genetic variation contributes to individual differences in obesity, but defining the exact relationships between naturally occurring genotypes and their effects on fatness remains elusive. As a step toward positional cloning of previously identified body composition quantitative trait loci (QTLs) from F2 crosses of mice from the C57BL/6ByJ and 129P3/J inbred strains, we sought to recapture them on a homogenous genetic background of consomic (chromosome substitution) strains. Male and female mice from reciprocal consomic strains originating from the C57BL/6ByJ and 129P3/J strains were bred and measured for body weight, length, and adiposity. Chromosomes 2, 7, and 9 were selected for substitution because previous F2 intercross studies revealed body composition QTLs on these chromosomes. We considered a QTL confirmed if one or both sexes of one or both reciprocal consomic strains differed significantly from the host strain in the expected direction after correction for multiple testing. Using these criteria, we confirmed two of two QTLs for body weight (Bwq5-6), three of three QTLs for body length (Bdln3-5), and three of three QTLs for adiposity (Adip20, Adip26 and Adip27). Overall, this study shows that despite the biological complexity of body size and composition, most QTLs for these traits are preserved when transferred to consomic strains; in addition, studying reciprocal consomic strains of both sexes is useful in assessing the robustness of a particular QTL.


Asunto(s)
Adiposidad/genética , Composición Corporal/genética , Estatura/genética , Tamaño Corporal/genética , Peso Corporal/genética , Sitios de Carácter Cuantitativo/genética , Animales , Mapeo Cromosómico , Cromosomas de los Mamíferos , Femenino , Variación Genética/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA