Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 293(47): 18123-18137, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30275012

RESUMEN

Clostridium difficile is a bacterial pathogen that causes major health challenges worldwide. It has a well-characterized surface (S)-layer, a para-crystalline proteinaceous layer surrounding the cell wall. In many bacterial and archaeal species, the S-layer is glycosylated, but no such modifications have been demonstrated in C. difficile. Here, we show that a C. difficile strain of S-layer cassette type 11, Ox247, has a complex glycan attached via an O-linkage to Thr-38 of the S-layer low-molecular-weight subunit. Using MS and NMR, we fully characterized this glycan. We present evidence that it is composed of three domains: (i) a core peptide-linked tetrasaccharide with the sequence -4-α-Rha-3-α-Rha-3-α-Rha-3-ß-Gal-peptide; (ii) a repeating pentasaccharide with the sequence -4-ß-Rha-4-α-Glc-3-ß-Rha-4-(α-Rib-3-)ß-Rha-; and (iii) a nonreducing end-terminal 2,3 cyclophosphoryl-rhamnose attached to a ribose-branched sub-terminal rhamnose residue. The Ox247 genome contains a 24-kb locus containing genes for synthesis and protein attachment of this glycan. Mutations in genes within this locus altered or completely abrogated formation of this glycan, and their phenotypes suggested that this S-layer modification may affect sporulation, cell length, and biofilm formation of C. difficile In summary, our findings indicate that the S-layer protein of SLCT-11 strains displays a complex glycan and suggest that this glycan is required for C. difficile sporulation and control of cell shape, a discovery with implications for the development of antimicrobials targeting the S-layer.


Asunto(s)
Clostridioides difficile/metabolismo , Glicoproteínas de Membrana/metabolismo , Polisacáridos/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Clostridioides difficile/genética , Clostridioides difficile/crecimiento & desarrollo , Glicosilación , Espectrometría de Masas , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Peso Molecular , Polisacáridos/química , Conformación Proteica , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo
2.
Infect Immun ; 79(3): 1067-76, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21189318

RESUMEN

Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC) are important human pathogens that rely on translocation of type III secretion system (T3SS) effectors for subversion of signal transduction pathways and colonization of the mammalian gut mucosa. While a core set of effectors is conserved between EPEC and EHEC strains, a growing number of accessory effectors that were found at various frequencies in clinical and environmental isolates have been recently identified. Recent genome projects identified espV as a pseudogene in EHEC but a putative functional gene in EPEC strains E110019 and E22 and the closely related mouse pathogen Citrobacter rodentium. The aim of this study was to determine the distribution of espV among clinical EPEC and EHEC strains and to investigate its function and role in pathogenesis. espV was found in 16% of the tested strains. While deletion of espV from C. rodentium did not affect colonization dynamics or fitness in mixed infections, expression of EspV in mammalian cells led to drastic morphological alterations, which were characterized by nuclear condensation, cell rounding, and formation of dendrite-like projections. Expression of EspV in yeast resulted in a dramatic increase in cell size and irreversible growth arrest. Although the role of EspV in infection and its target host cell protein(s) require further investigation, the data point to a novel mechanism by which the T3SS subverts cell signaling.


Asunto(s)
Sistemas de Secreción Bacterianos/genética , Citrobacter rodentium/metabolismo , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enteropatógena/genética , Infecciones por Escherichia coli/genética , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli Enterohemorrágica/metabolismo , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enteropatógena/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/metabolismo , Células Eucariotas/microbiología , Técnica del Anticuerpo Fluorescente , Genes Bacterianos/genética , Células HeLa , Humanos , Ratones , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Virulencia
3.
PLoS Pathog ; 5(12): e1000683, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20011125

RESUMEN

Enteropathogenic Escherichia coli (EPEC) strains are defined as extracellular pathogens which nucleate actin rich pedestal-like membrane extensions on intestinal enterocytes to which they intimately adhere. EPEC infection is mediated by type III secretion system effectors, which modulate host cell signaling. Recently we have shown that the WxxxE effector EspT activates Rac1 and Cdc42 leading to formation of membrane ruffles and lamellipodia. Here we report that EspT-induced membrane ruffles facilitate EPEC invasion into non-phagocytic cells in a process involving Rac1 and Wave2. Internalized EPEC resides within a vacuole and Tir is localized to the vacuolar membrane, resulting in actin polymerization and formation of intracellular pedestals. To the best of our knowledge this is the first time a pathogen has been shown to induce formation of actin comets across a vacuole membrane. Moreover, our data breaks the dogma of EPEC as an extracellular pathogen and defines a new category of invasive EPEC.


Asunto(s)
Actinas/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Transducción de Señal/fisiología , Células 3T3 , Animales , Células CACO-2 , Membrana Celular , Escherichia coli Enteropatógena/metabolismo , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Ratones , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Seudópodos/metabolismo , Transfección , Vacuolas/microbiología , Virulencia , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Proteína de Unión al GTP rac1/metabolismo
4.
Cell Microbiol ; 12(5): 654-64, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20039879

RESUMEN

We investigated how the type III secretion system WxxxE effectors EspM2 of enterohaemorrhagic Escherichia coli, which triggers stress fibre formation, and SifA of Salmonella enterica serovar Typhimurium, which is involved in intracellular survival, modulate Rho GTPases. We identified a direct interaction between EspM2 or SifA and nucleotide-free RhoA. Nuclear Magnetic Resonance Spectroscopy revealed that EspM2 has a similar fold to SifA and the guanine nucleotide exchange factor (GEF) effector SopE. EspM2 induced nucleotide exchange in RhoA but not in Rac1 or H-Ras, while SifA induced nucleotide exchange in none of them. Mutating W70 of the WxxxE motif or L118 and I127 residues, which surround the catalytic loop, affected the stability of EspM2. Substitution of Q124, located within the catalytic loop of EspM2, with alanine, greatly attenuated the RhoA GEF activity in vitro and the ability of EspM2 to induce stress fibres upon ectopic expression. These results suggest that binding of SifA to RhoA does not trigger nucleotide exchange while EspM2 is a unique Rho GTPase GEF.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Salmonella typhimurium/enzimología , Proteína de Unión al GTP rhoA/metabolismo , Sustitución de Aminoácidos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glicoproteínas/química , Glicoproteínas/metabolismo , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Pliegue de Proteína , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Estructura Terciaria de Proteína
5.
Infect Immun ; 78(4): 1417-25, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20123714

RESUMEN

Subversion of Rho family small GTPases, which control actin dynamics, is a common infection strategy used by bacterial pathogens. In particular, Salmonella enterica serovar Typhimurium, Shigella flexneri, enteropathogenic Escherichia coli (EPEC), and enterohemorrhagic Escherichia coli (EHEC) translocate type III secretion system (T3SS) effector proteins to modulate the Rho GTPases RhoA, Cdc42, and Rac1, which trigger formation of stress fibers, filopodia, and lamellipodia/ruffles, respectively. The Salmonella effector SopE is a guanine nucleotide exchange factor (GEF) that activates Rac1 and Cdc42, which induce "the trigger mechanism of cell entry." Based on a conserved Trp-xxx-Glu motif, the T3SS effector proteins IpgB1 and IpgB2 of Shigella, SifA and SifB of Salmonella, and Map of EPEC and EHEC were grouped together into a WxxxE family; recent studies identified the T3SS EPEC and EHEC effectors EspM and EspT as new family members. Recent structural and functional studies have shown that representatives of the WxxxE effectors share with SopE a 3-D fold and GEF activity. In this minireview, we summarize contemporary findings related to the SopE and WxxxE GEFs in the context of their role in subverting general host cell signaling pathways and infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enterobacteriaceae/patogenicidad , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Virulencia/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Proteínas de Escherichia coli/metabolismo , Glicoproteínas/metabolismo , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteína de Unión al GTP rac1/metabolismo
6.
Cell Microbiol ; 11(2): 309-22, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19046338

RESUMEN

Enteropathogenic Escherichia coli (EPEC) subverts actin dynamics in eukaryotic cells by injecting effector proteins via a type III secretion system. First, WxxxE effector Map triggers transient formation of filopodia. Then, following recovery from the filopodial signals, EPEC triggers robust actin polymerization via a signalling complex comprising Tir and the adaptor proteins Nck. In this paper we show that Map triggers filopodia formation by activating Cdc42; expression of dominant-negative Cdc42 or knock-down of Cdc42 by siRNA impaired filopodia formation. In addition, Map binds PDZ1 of NHERF1. We show that Map-NHERF1 interaction is needed for filopodia stabilization in a process involving ezrin and the RhoA/ROCK cascade; expression of dominant-negative ezrin and RhoA or siRNA knock-down of RhoA lead to rapid elimination of filopodia. Moreover, we show that formation of the Tir-Nck signalling complex leads to filopodia withdrawal. Recovery from the filopodial signals requires phosphorylation of a Tir tyrosine (Y474) residue and actin polymerization pathway as both infection of cells with EPEC expressing TirY474S or infection of Nck knockout cells with wild-type EPEC resulted in persistence of filopodia. These results show that EPEC effectors modulate actin dynamics by temporal subverting the Rho GTPases and other actin polymerization pathways for the benefit of the adherent pathogen.


Asunto(s)
Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/metabolismo , Seudópodos/fisiología , Factores de Virulencia/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Línea Celular , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Técnicas de Silenciamiento del Gen , Ratones , Modelos Biológicos , Mutación Missense , Proteínas Oncogénicas/metabolismo , Fosfoproteínas/metabolismo , Complejo GPIb-IX de Glicoproteína Plaquetaria/antagonistas & inhibidores , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Unión Proteica , Receptores de Superficie Celular/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
7.
Cell Microbiol ; 11(2): 217-29, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19016787

RESUMEN

Subversion of the eukaryotic cell cytoskeleton is a virulence strategy employed by many bacterial pathogens. Due to the pivotal role of Rho GTPases in actin dynamics they are common targets of bacterial effector proteins and toxins. IpgB1, IpgB2 (Shigella), SifA, SifB (Salmonella) and Map and EspM (attaching and effacing pathogens) constitute a family of type III secretion system effectors that subverts small GTPase signalling pathways. In this study we identified and characterized EspT from Citrobacter rodentium that triggers formation of lamellipodia on Swiss 3T3 and membrane ruffles on HeLa cells, which are reminiscent of the membrane ruffles induced by IpgB1. Ectopic expression of EspT and IpgB1, but not EspM, resulted in a mitochondrial localization. Using dominant negative constructs we found that EspT-induced actin remodelling is dependent on GTP-bound Rac-1 and Cdc42 but not ELMO or Dock180, which are hijacked by IpgB1 in order to form a Rac-1 specific guanine nucleotide exchange factor. Using pull-down assays with the Rac-1 and Cdc42 binding domains of Pak and WASP we demonstrate that EspT is capable of activating both Rac-1 and Cdc42. These results suggest that EspT modulates the host cell cytoskeleton through coactivation of Rac-1 and Cdc42 by a distinct mechanism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/microbiología , Citrobacter rodentium/fisiología , Seudópodos/microbiología , Factores de Virulencia/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Células Epiteliales/microbiología , Humanos , Ratones , Datos de Secuencia Molecular , Unión Proteica , Alineación de Secuencia
8.
Cell Microbiol ; 10(7): 1429-41, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18331467

RESUMEN

Rho GTPases are common targets of bacterial toxins and type III secretion system effectors. IpgB1 and IpgB2 of Shigella and Map of enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli were recently grouped together on the basis that they share a conserved WxxxE motif. In this study, we characterized six WxxxE effectors from attaching and effacing pathogens: TrcA and EspM1 of EPEC strain B171, EspM1 and EspM2 of EHEC strain Sakai and EspM2 and EspM3 of Citrobacter rodentium. We show that EspM2 triggers formation of global parallel stress fibres, TrcA and EspM1 induce formation of localized parallel stress fibres and EspM3 triggers formation of localized radial stress fibres. Using EspM2 and EspM3 as model effectors, we report that while substituting the conserved Trp with Ala abolished activity, conservative Trp to Tyr or Glu to Asp substitutions did not affect stress-fibre formation. We show, using dominant negative constructs and chemical inhibitors, that the activity of EspM2 and EspM3 is RhoA and ROCK-dependent. Using Rhotekin pull-downs, we have shown that EspM2 and EspM3 activate RhoA; translocation of EspM2 and EspM3 triggered phosphorylation of cofilin. These results suggest that the EspM effectors modulate actin dynamics by activating the RhoA signalling pathway.


Asunto(s)
Actinas/metabolismo , Bacterias/patogenicidad , Adhesión Bacteriana/fisiología , Proteínas Bacterianas/metabolismo , Fibras de Estrés/metabolismo , Células 3T3 , Factores Despolimerizantes de la Actina/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis , Bacterias/metabolismo , Proteínas Bacterianas/genética , Activación Enzimática , Proteínas de Unión al GTP , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Filogenia , Alineación de Secuencia , Transducción de Señal/fisiología , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo
9.
J Med Microbiol ; 58(Pt 8): 988-995, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19528152

RESUMEN

Enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) translocate dozens of type III secretion system effectors, including the WxxxE effectors Map, EspM and EspT that activate Rho GTPases. While map, which is carried on the LEE pathogenicity island, is absolutely conserved among EPEC and EHEC strains, the prevalence of espM and espT is not known. Here we report the results of a large screen aimed at determining the prevalence of espM and espT among clinical EPEC and EHEC isolates. The results suggest that espM, detected in 51 % of the tested strains, is more commonly found in EPEC and EHEC serogroups that are linked to severe human infections. In contrast, espT was absent from all the EHEC isolates and was found in only 1.8 % of the tested EPEC strains. Further characterization of the virulence gene repertoire of the espT-positive strains led to the identification of a new zeta2 intimin variant. All the espT-positive strains but two contained the tccP gene. espT was first found in Citrobacter rodentium and later in silico in EPEC E110019, which is of particular interest as this strain was responsible for a particularly severe diarrhoeal outbreak in Finland in 1987 that affected 650 individuals in a school complex and an additional 137 associated household members. Comparing the protein sequences of EspT to that of E110019 showed a high level of conservation, with only three strains encoding EspT that differed in 6 amino acids. At present, it is not clear why espT is so rare, and what impact EspM and EspT have on EPEC and EHEC infection.


Asunto(s)
Escherichia coli Enterohemorrágica/metabolismo , Escherichia coli Enteropatógena/metabolismo , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Secuencia de Aminoácidos , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos , Datos de Secuencia Molecular
10.
Nat Commun ; 5: 5887, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25523213

RESUMEN

The hallmark of enteropathogenic Escherichia coli (EPEC) infection is the formation of actin-rich pedestal-like structures, which are generated following phosphorylation of the bacterial effector Tir by cellular Src and Abl family tyrosine kinases. This leads to recruitment of the Nck-WIP-N-WASP complex that triggers Arp2/3-dependent actin polymerization in the host cell. The same phosphorylation-mediated signalling network is also assembled downstream of the Vaccinia virus protein A36 and the phagocytic Fc-gamma receptor FcγRIIa. Here we report that the EPEC type-III secretion system effector EspJ inhibits autophosphorylation of Src and phosphorylation of the Src substrates Tir and FcγRIIa. Consistent with this, EspJ inhibits actin polymerization downstream of EPEC, Vaccinia virus and opsonized red blood cells. We identify EspJ as a unique adenosine diphosphate (ADP) ribosyltransferase that directly inhibits Src kinase by simultaneous amidation and ADP ribosylation of the conserved kinase-domain residue, Src E310, resulting in glutamine-ADP ribose.


Asunto(s)
Adenosina Difosfato/metabolismo , Escherichia coli Enterohemorrágica/metabolismo , Infecciones por Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Familia-src Quinasas/metabolismo , Adenosina Difosfato/genética , Secuencias de Aminoácidos , Escherichia coli Enterohemorrágica/genética , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional , Receptores de IgG/metabolismo , Familia-src Quinasas/química , Familia-src Quinasas/genética
11.
J Biol Chem ; 282(18): 13151-9, 2007 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-17311917

RESUMEN

We report here the first direct assessment of the specificity of a class of peptidoglycan cross-linking enzymes, the L,D-transpeptidases, for the highly diverse structure of peptidoglycan precursors of Gram-positive bacteria. The lone functionally characterized member of this new family of active site cysteine peptidases, Ldt(fm) from Enterococcus faecium, was previously shown to bypass the D,D-transpeptidase activity of the classical penicillin-binding proteins leading to high level cross-resistance to glycopeptide and beta-lactam antibiotics. Ldt(fm) homologues from Bacillus subtilis (Ldt(Bs)) and E. faecalis (Ldt(fs)) were found here to cross-link their cognate disaccharide-peptide subunits containing meso-diaminopimelic acid (mesoDAP(3)) and L-Lys(3)-L-Ala-L-Ala at the third position of the stem peptide, respectively, instead of L-Lys(3)-d-iAsn in E. faecium. Ldt(fs) differed from Ldt(fm) and Ldt(Bs) by its capacity to hydrolyze the L-Lys(3)-D-Ala(4) bond of tetrapeptide (L,D-carboxypeptidase activity) and pentapeptide (L,D-endopeptidase activity) stems, in addition to the common cross-linking activity. The three enzymes were specific for their cognate acyl acceptors in the cross-linking reaction. In contrast to Ldt(fs), which was also specific for its cognate acyl donor, Ldt(fm) tolerated substitution of L-Lys(3)-D-iAsn by L-Lys(3)-L-Ala-L-Ala. Likewise, Ldt(Bs) tolerated substitution of mesoDAP(3) by L-Lys(3)-D-iAsn and L-Lys(3)-L-Ala-L-Ala in the acyl donor. Thus, diversification of the structure of peptidoglycan precursors associated with speciation has led to a parallel evolution of the substrate specificity of the L,D-transpeptidases affecting mainly the recognition of the acyl acceptor. Blocking the assembly of the side chain could therefore be used to combat antibiotic resistance involving L,D-transpeptidases.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Enterococcus faecalis/genética , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano/genética , Peptidil Transferasas/genética , Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Pared Celular/enzimología , Pared Celular/genética , Cisteína Endopeptidasas/genética , Ácido Diaminopimélico/metabolismo , Farmacorresistencia Bacteriana/genética , Enterococcus faecalis/enzimología , Oligopéptidos/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/biosíntesis , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Especificidad por Sustrato
12.
J Bacteriol ; 186(5): 1221-8, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14973044

RESUMEN

Peptidoglycan polymerization complexes contain multimodular penicillin-binding proteins (PBP) of classes A and B that associate a conserved C-terminal transpeptidase module to an N-terminal glycosyltransferase or morphogenesis module, respectively. In Enterococcus faecalis, class B PBP5 mediates intrinsic resistance to the cephalosporin class of beta-lactam antibiotics, such as ceftriaxone. To identify the glycosyltransferase partner(s) of PBP5, combinations of deletions were introduced in all three class A PBP genes of E. faecalis JH2-2 (ponA, pbpF, and pbpZ). Among mutants with single or double deletions, only JH2-2 DeltaponA DeltapbpF was susceptible to ceftriaxone. Ceftriaxone resistance was restored by heterologous expression of pbpF from Enterococcus faecium but not by mgt encoding the monofunctional glycosyltransferase of Staphylococcus aureus. Thus, PBP5 partners essential for peptidoglycan polymerization in the presence of beta-lactams formed a subset of the class A PBPs of E. faecalis, and heterospecific complementation was observed with an ortholog from E. faecium. Site-directed mutagenesis of pbpF confirmed that the catalytic serine residue of the transpeptidase module was not required for resistance. None of the three class A PBP genes was essential for viability, although deletion of the three genes led to an increase in the generation time and to a decrease in peptidoglycan cross-linking. As the E. faecalis chromosome does not contain any additional glycosyltransferase-related genes, these observations indicate that glycan chain polymerization in the triple mutant is performed by a novel type of glycosyltransferase. The latter enzyme was not inhibited by moenomycin, since deletion of the three class A PBP genes led to high-level resistance to this glycosyltransferase inhibitor.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Enterococcus faecalis/efectos de los fármacos , Hexosiltransferasas/metabolismo , Muramoilpentapéptido Carboxipeptidasa/metabolismo , Peptidil Transferasas/metabolismo , Resistencia betalactámica , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Proteínas Portadoras/clasificación , Proteínas Portadoras/genética , Enterococcus faecalis/genética , Enterococcus faecalis/crecimiento & desarrollo , Inhibidores Enzimáticos/farmacología , Eliminación de Gen , Glicosiltransferasas/antagonistas & inhibidores , Hexosiltransferasas/clasificación , Hexosiltransferasas/genética , Pruebas de Sensibilidad Microbiana , Muramoilpentapéptido Carboxipeptidasa/clasificación , Muramoilpentapéptido Carboxipeptidasa/genética , Oligosacáridos/farmacología , Proteínas de Unión a las Penicilinas , Peptidoglicano/química , Peptidoglicano/metabolismo , Peptidil Transferasas/clasificación , Peptidil Transferasas/genética
13.
J Biol Chem ; 279(40): 41546-56, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15280360

RESUMEN

The peptidoglycan cross-bridges of Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium consist of the sequences Gly(5), l-Ala(2), and d-Asx, respectively. Expression of the fmhB, femA, and femB genes of S. aureus in E. faecalis led to the production of peptidoglycan precursors substituted by mosaic side chains that were efficiently used by the penicillin-binding proteins for cross-bridge formation. The Fem transferases were specific for incorporation of glycyl residues at defined positions of the side chains in the absence of any additional S. aureus factors such as tRNAs used for amino acid activation. The PBPs of E. faecalis displayed a broad substrate specificity because mosaic side chains containing from 1 to 5 residues and Gly instead of l-Ala at the N-terminal position were used for peptidoglycan cross-linking. Low affinity PBP2a of S. aureus conferred beta-lactam resistance in E. faecalis and E. faecium, thereby indicating that there was no barrier to heterospecific expression of resistance caused by variations in the structure of peptidoglycan precursors. Thus, conservation of the structure of the peptidoglycan cross-bridges in members of the same species reflects the high specificity of the enzymes for side chain synthesis, although this is not essential for the activity of the PBPs.


Asunto(s)
Bacterias Grampositivas/metabolismo , Peptidoglicano/biosíntesis , Secuencia de Aminoácidos , Enterococcus faecalis/metabolismo , Enterococcus faecium/metabolismo , Peptidoglicano/química , Peptidil Transferasas/metabolismo , Staphylococcus aureus/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA