Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 608(7922): 336-345, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896751

RESUMEN

In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years1. Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal configuration and specific interactions2,3. Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectories than uniform selection since the Neolithic period. In the UK Biobank4,5 cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved fitness or health indicators. This suggests that other reasons for the beneficial effects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fluctuations, settlement density and wild animal exploitation-proxies for these drivers-provide better explanations of LP selection than the extent of milk exploitation. These findings offer new perspectives on prehistoric milk exploitation and LP evolution.


Asunto(s)
Arqueología , Industria Lechera , Enfermedad , Genética de Población , Lactasa , Leche , Selección Genética , Animales , Animales Salvajes , Bancos de Muestras Biológicas , Cerámica/historia , Estudios de Cohortes , Industria Lechera/historia , Europa (Continente)/epidemiología , Europa (Continente)/etnología , Hambruna/estadística & datos numéricos , Frecuencia de los Genes , Genotipo , Historia Antigua , Humanos , Lactasa/genética , Leche/metabolismo , Reino Unido
3.
Mol Biol Evol ; 38(6): 2260-2272, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33528505

RESUMEN

In the course of evolution, pecorans (i.e., higher ruminants) developed a remarkable diversity of osseous cranial appendages, collectively referred to as "headgear," which likely share the same origin and genetic basis. However, the nature and function of the genetic determinants underlying their number and position remain elusive. Jacob and other rare populations of sheep and goats are characterized by polyceraty, the presence of more than two horns. Here, we characterize distinct POLYCERATE alleles in each species, both associated with defective HOXD1 function. We show that haploinsufficiency at this locus results in the splitting of horn bud primordia, likely following the abnormal extension of an initial morphogenetic field. These results highlight the key role played by this gene in headgear patterning and illustrate the evolutionary co-option of a gene involved in the early development of bilateria to properly fix the position and number of these distinctive organs of Bovidae.


Asunto(s)
Evolución Biológica , Cabras/genética , Proteínas de Homeodominio/genética , Cuernos , Ovinos/genética , Animales , Biometría , Regulación del Desarrollo de la Expresión Génica , Cabras/embriología , Cabras/metabolismo , Proteínas de Homeodominio/metabolismo , Masculino , Ratones Transgénicos , Mutación , Ovinos/embriología , Ovinos/metabolismo
4.
Proc Biol Sci ; 289(1975): 20220147, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35582797

RESUMEN

Dogs are among the most variable species today, but little is known about the morphological variability in the early phases of their history. The Neolithic transition to farming may have resulted in an early morphological diversification as a result of changes in the anthropic environment or intentional selection on specific morphologies. Here, we describe the variability and modularity in mandible form by comparing 525 dog mandibles from European archaeological sites ranging from 8100 to 3000 cal. BC to a reference sample of modern dogs, wolves, and dingoes. We use three-dimensional geometric morphometrics to quantify the form of complete and fragmented mandibles. We demonstrate that an important morphological variability already existed before the Bronze Age in Europe, yet the largest, smallest, most brachycephalic or dolichocephalic extant dogs have no equivalent in the archaeological sample, resulting in a lower variation compared to modern relatives. The covariation between the anterior and posterior parts of the mandible is lower in archaeological dogs, suggesting a low degree of intentional human selection in early periods. The mandible of modern and ancient dogs differs in functionally important areas, possibly reflecting differences in diet, competition, or the implication of ancient dogs in hunting or defence.


Asunto(s)
Lobos , Agricultura , Animales , Arqueología , Perros , Europa (Continente) , Historia Antigua , Mandíbula/anatomía & histología
5.
Proc Natl Acad Sci U S A ; 116(35): 17231-17238, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31405970

RESUMEN

Archaeological evidence indicates that pig domestication had begun by ∼10,500 y before the present (BP) in the Near East, and mitochondrial DNA (mtDNA) suggests that pigs arrived in Europe alongside farmers ∼8,500 y BP. A few thousand years after the introduction of Near Eastern pigs into Europe, however, their characteristic mtDNA signature disappeared and was replaced by haplotypes associated with European wild boars. This turnover could be accounted for by substantial gene flow from local European wild boars, although it is also possible that European wild boars were domesticated independently without any genetic contribution from the Near East. To test these hypotheses, we obtained mtDNA sequences from 2,099 modern and ancient pig samples and 63 nuclear ancient genomes from Near Eastern and European pigs. Our analyses revealed that European domestic pigs dating from 7,100 to 6,000 y BP possessed both Near Eastern and European nuclear ancestry, while later pigs possessed no more than 4% Near Eastern ancestry, indicating that gene flow from European wild boars resulted in a near-complete disappearance of Near East ancestry. In addition, we demonstrate that a variant at a locus encoding black coat color likely originated in the Near East and persisted in European pigs. Altogether, our results indicate that while pigs were not independently domesticated in Europe, the vast majority of human-mediated selection over the past 5,000 y focused on the genomic fraction derived from the European wild boars, and not on the fraction that was selected by early Neolithic farmers over the first 2,500 y of the domestication process.


Asunto(s)
ADN Antiguo , ADN Mitocondrial/genética , Domesticación , Flujo Génico , Filogenia , Porcinos/genética , Animales , Europa (Continente) , Historia Antigua , Medio Oriente , Pigmentación de la Piel/genética
6.
Biol Lett ; 14(10)2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333260

RESUMEN

Near Eastern Neolithic farmers introduced several species of domestic plants and animals as they dispersed into Europe. Dogs were the only domestic species present in both Europe and the Near East prior to the Neolithic. Here, we assessed whether early Near Eastern dogs possessed a unique mitochondrial lineage that differentiated them from Mesolithic European populations. We then analysed mitochondrial DNA sequences from 99 ancient European and Near Eastern dogs spanning the Upper Palaeolithic to the Bronze Age to assess if incoming farmers brought Near Eastern dogs with them, or instead primarily adopted indigenous European dogs after they arrived. Our results show that European pre-Neolithic dogs all possessed the mitochondrial haplogroup C, and that the Neolithic and Post-Neolithic dogs associated with farmers from Southeastern Europe mainly possessed haplogroup D. Thus, the appearance of haplogroup D most probably resulted from the dissemination of dogs from the Near East into Europe. In Western and Northern Europe, the turnover is incomplete and haplogroup C persists well into the Chalcolithic at least. These results suggest that dogs were an integral component of the Neolithic farming package and a mitochondrial lineage associated with the Near East was introduced into Europe alongside pigs, cows, sheep and goats. It got diluted into the native dog population when reaching the Western and Northern margins of Europe.


Asunto(s)
Arqueología , ADN Mitocondrial , Perros/genética , Agricultura , Animales , Perros/clasificación , Europa (Continente) , Fósiles , Haplotipos , Humanos , Análisis de Secuencia de ADN
7.
Proc Biol Sci ; 284(1860)2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28768891

RESUMEN

Cattle dominate archaeozoological assemblages from the north-central Europe between the sixth and fifth millennium BC and are frequently considered as exclusively used for their meat. Dairy products may have played a greater role than previously believed. Selective pressure on the lactase persistence mutation has been modelled to have begun between 6000 and 4000 years ago in central Europe. The discovery of milk lipids in late sixth millennium ceramic sieves in Poland may reflect an isolated regional peculiarity for cheese making or may signify more generalized milk exploitation in north-central Europe during the Early Neolithic. To investigate these issues, we analysed the mortality profiles based on age-at-death analysis of cattle tooth eruption, wear and replacement from 19 archaeological sites of the Linearbandkeramik (LBK) culture (sixth to fifth millennium BC). The results indicate that cattle husbandry was similar across time and space in the LBK culture with a degree of specialization for meat exploitation in some areas. Statistical comparison with reference age-at-death profiles indicate that mixed husbandry (milk and meat) was practised, with mature animals being kept. The analysis provides a unique insight into LBK cattle husbandry and how it evolved in later cultures in central and western Europe. It also opens a new perspective on how and why the Neolithic way of life developed through continental Europe and how dairy products became a part of the human diet.


Asunto(s)
Crianza de Animales Domésticos/historia , Carne , Leche , Animales , Arqueología , Bovinos , Europa (Continente) , Historia Antigua , Humanos
8.
BMC Biol ; 14(1): 93, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27769298

RESUMEN

BACKGROUND: Climatic and environmental fluctuations as well as anthropogenic pressure have led to the extinction of much of Europe's megafauna. The European bison or wisent (Bison bonasus), one of the last wild European large mammals, narrowly escaped extinction at the onset of the 20th century owing to hunting and habitat fragmentation. Little is known, however, about its origin, evolutionary history and population dynamics during the Pleistocene. RESULTS: Through ancient DNA analysis we show that the emblematic European bison has experienced several waves of population expansion, contraction, and extinction during the last 50,000 years in Europe, culminating in a major reduction of genetic diversity during the Holocene. Fifty-seven complete and partial ancient mitogenomes from throughout Europe, the Caucasus, and Siberia reveal that three populations of wisent (Bison bonasus) and steppe bison (B. priscus) alternately occupied Western Europe, correlating with climate-induced environmental changes. The Late Pleistocene European steppe bison originated from northern Eurasia, whereas the modern wisent population emerged from a refuge in the southern Caucasus after the last glacial maximum. A population overlap during a transition period is reflected in ca. 36,000-year-old paintings in the French Chauvet cave. Bayesian analyses of these complete ancient mitogenomes yielded new dates of the various branching events during the evolution of Bison and its radiation with Bos, which lead us to propose that the genetic affiliation between the wisent and cattle mitogenomes result from incomplete lineage sorting rather than post-speciation gene flow. CONCLUSION: The paleogenetic analysis of bison remains from the last 50,000 years reveals the influence of climate changes on the dynamics of the various bison populations in Europe, only one of which survived into the Holocene, where it experienced severe reductions in its genetic diversity. The time depth and geographical scope of this study enables us to propose temperate Western Europe as a suitable biotope for the wisent compatible with its reintroduction.


Asunto(s)
Bison/clasificación , Cambio Climático , Dinámica Poblacional , Animales , Teorema de Bayes , Evolución Biológica , Bison/genética , Europa (Continente) , Extinción Biológica , Variación Genética/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia
9.
Proc Natl Acad Sci U S A ; 110(31): 12589-94, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23858458

RESUMEN

The spread of farming from western Asia to Europe had profound long-term social and ecological impacts, but identification of the specific nature of Neolithic land management practices and the dietary contribution of early crops has been problematic. Here, we present previously undescribed stable isotope determinations of charred cereals and pulses from 13 Neolithic sites across Europe (dating ca. 5900-2400 cal B.C.), which show that early farmers used livestock manure and water management to enhance crop yields. Intensive manuring inextricably linked plant cultivation and animal herding and contributed to the remarkable resilience of these combined practices across diverse climatic zones. Critically, our findings suggest that commonly applied paleodietary interpretations of human and herbivore δ(15)N values have systematically underestimated the contribution of crop-derived protein to early farmer diets.


Asunto(s)
Agricultura/historia , Arqueología , Productos Agrícolas/historia , Grano Comestible/historia , Europa (Continente) , Historia Antigua , Humanos
10.
Proc Natl Acad Sci U S A ; 109(24): 9326-30, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22645332

RESUMEN

Community differentiation is a fundamental topic of the social sciences, and its prehistoric origins in Europe are typically assumed to lie among the complex, densely populated societies that developed millennia after their Neolithic predecessors. Here we present the earliest, statistically significant evidence for such differentiation among the first farmers of Neolithic Europe. By using strontium isotopic data from more than 300 early Neolithic human skeletons, we find significantly less variance in geographic signatures among males than we find among females, and less variance among burials with ground stone adzes than burials without such adzes. From this, in context with other available evidence, we infer differential land use in early Neolithic central Europe within a patrilocal kinship system.


Asunto(s)
Agricultura , Familia , Europa (Continente) , Femenino , Geografía , Historia Antigua , Humanos , Masculino
11.
Nat Ecol Evol ; 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39472666

RESUMEN

During the sixth millennium BCE, the first farmers of Central Europe rapidly expanded across a varied mosaic of forested environments. Such environments would have offered important sources of mineral-rich animal feed and shelter, prompting the question: to what extent did early farmers exploit forests to raise their herds? Here, to resolve this, we have assembled multi-regional datasets, comprising bulk and compound-specific stable isotope values from zooarchaeological remains and pottery, and conducted cross-correlation analyses within a palaeo-environmental framework. Our findings reveal a diversity of pasturing strategies for cattle employed by early farmers, with a notable emphasis on intensive utilization of forests for grazing and seasonal foddering in some regions. This experimentation with forest-based animal feeds by early farmers would have enhanced animal fertility and milk yields for human consumption, concurrently contributing to the expansion of prehistoric farming settlements and the transformation of forest ecosystems. Our study emphasizes the intricate relationship that existed between early farmers and forested landscapes, shedding light on the adaptive dynamics that shaped humans, animals and environments in the past.

13.
Sci Rep ; 11(1): 8185, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33854159

RESUMEN

Present-day domestic cattle are reproductively active throughout the year, which is a major asset for dairy production. Large wild ungulates, in contrast, are seasonal breeders, as were the last historic representatives of the aurochs, the wild ancestors of cattle. Aseasonal reproduction in cattle is a consequence of domestication and herding, but exactly when this capacity developed in domestic cattle is still unknown and the extent to which early farming communities controlled the seasonality of reproduction is debated. Seasonal or aseasonal calving would have shaped the socio-economic practices of ancient farming societies differently, structuring the agropastoral calendar and determining milk availability where dairying is attested. In this study, we reconstruct the calving pattern through the analysis of stable oxygen isotope ratios of cattle tooth enamel from 18 sites across Europe, dating from the 6th mill. cal BC (Early Neolithic) in the Balkans to the 4th mill. cal BC (Middle Neolithic) in Western Europe. Seasonal calving prevailed in Europe between the 6th and 4th millennia cal BC. These results suggest that cattle agropastoral systems in Neolithic Europe were strongly constrained by environmental factors, in particular forage resources. The ensuing fluctuations in milk availability would account for cheese-making, transforming a seasonal milk supply into a storable product.


Asunto(s)
Crianza de Animales Domésticos/historia , Leche/metabolismo , Oxígeno/análisis , Diente/química , Animales , Peninsula Balcánica , Bovinos , Industria Lechera , Domesticación , Historia Medieval , Marcaje Isotópico , Oxígeno/química , Estaciones del Año
15.
PLoS One ; 13(1): e0189278, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29304165

RESUMEN

In north-eastern France, red deer (Cervus elaphus L.) populations were rebuilt from a few hundred individuals, which have subsisted in remote valleys of the Vosges mountains, and to a lesser extent from individuals escaped from private enclosures; at present times, this species occupies large areas, mainly in the Vosges Mountains. In this study, we examined the population dynamics of red deer in the Vosges Mountains using ancient and contemporary mitochondrial DNA (mtDNA) from 140 samples (23 ancient + 117 modern) spanning the last 7'000 years. In addition, we reconstructed the feeding habits and the habitat of red deer since the beginning of agriculture applying isotopic analyses in order to establish a basis for current environmental management strategies. We show that past and present red deer in the Vosges Mountains belong to mtDNA haplogroup A, suggesting that they originated from the Iberian refugium after the last glacial maximum (LGM). Palaeogenetic analysis of ancient bone material revealed the presence of two distinct haplotypes with different temporal distributions. Individuals belonging to the two haplotype groups apparently occupied two different habitats over at least 7'000 years. AM6 correlates with an ecological type that feeds in densely forested mountain landscapes, while AM235 correlates with feeding in lowland landscapes, composed of a mixture of meadows and riverine, herb-rich woodlands. Our results suggest that red deer of north-eastern France was able to adapt, over the long term, to these different habitat types, possibly due to efficient ethological barriers. Modern haplotype patterns support the historical record that red deer has been exposed to strong anthropogenic influences as a major game species.


Asunto(s)
Ciervos/genética , Agricultura/historia , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/aislamiento & purificación , Ciervos/clasificación , Dieta/historia , Ecosistema , Francia , Variación Genética , Haplotipos , Historia del Siglo XX , Historia del Siglo XXI , Historia Antigua , Historia Medieval , Filogeografía , Dinámica Poblacional/historia
16.
Proc Biol Sci ; 274(1616): 1377-85, 2007 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-17412685

RESUMEN

The extinct aurochs (Bos primigenius primigenius) was a large type of cattle that ranged over almost the whole Eurasian continent. The aurochs is the wild progenitor of modern cattle, but it is unclear whether European aurochs contributed to this process. To provide new insights into the demographic history of aurochs and domestic cattle, we have generated high-confidence mitochondrial DNA sequences from 59 archaeological skeletal finds, which were attributed to wild European cattle populations based on their chronological date and/or morphology. All pre-Neolithic aurochs belonged to the previously designated P haplogroup, indicating that this represents the Late Glacial Central European signature. We also report one new and highly divergent haplotype in a Neolithic aurochs sample from Germany, which points to greater variability during the Pleistocene. Furthermore, the Neolithic and Bronze Age samples that were classified with confidence as European aurochs using morphological criteria all carry P haplotype mitochondrial DNA, suggesting continuity of Late Glacial and Early Holocene aurochs populations in Europe. Bayesian analysis indicates that recent population growth gives a significantly better fit to our data than a constant-sized population, an observation consistent with a postglacial expansion scenario, possibly from a single European refugial population. Previous work has shown that most ancient and modern European domestic cattle carry haplotypes previously designated T. This, in combination with our new finding of a T haplotype in a very Early Neolithic site in Syria, lends persuasive support to a scenario whereby gracile Near Eastern domestic populations, carrying predominantly T haplotypes, replaced P haplotype-carrying robust autochthonous aurochs populations in Europe, from the Early Neolithic onward. During the period of coexistence, it appears that domestic cattle were kept separate from wild aurochs and introgression was extremely rare.


Asunto(s)
Bovinos/genética , ADN Mitocondrial/genética , Animales , Animales Domésticos , Europa (Continente) , Haplotipos , Historia Antigua , Medio Oriente , Datos de Secuencia Molecular
17.
Nat Commun ; 8: 16082, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28719574

RESUMEN

Europe has played a major role in dog evolution, harbouring the oldest uncontested Palaeolithic remains and having been the centre of modern dog breed creation. Here we sequence the genomes of an Early and End Neolithic dog from Germany, including a sample associated with an early European farming community. Both dogs demonstrate continuity with each other and predominantly share ancestry with modern European dogs, contradicting a previously suggested Late Neolithic population replacement. We find no genetic evidence to support the recent hypothesis proposing dual origins of dog domestication. By calibrating the mutation rate using our oldest dog, we narrow the timing of dog domestication to 20,000-40,000 years ago. Interestingly, we do not observe the extreme copy number expansion of the AMY2B gene characteristic of modern dogs that has previously been proposed as an adaptation to a starch-rich diet driven by the widespread adoption of agriculture in the Neolithic.


Asunto(s)
Evolución Biológica , ADN Mitocondrial/genética , Perros/genética , Genoma , Animales , Domesticación , Variación Genética , Filogeografía
18.
PLoS One ; 8(10): e75110, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098367

RESUMEN

We have used a paleogenetics approach to investigate the genetic landscape of coat color variation in ancient Eurasian dog and wolf populations. We amplified DNA fragments of two genes controlling coat color, Mc1r (Melanocortin 1 Receptor) and CBD103 (canine-ß-defensin), in respectively 15 and 19 ancient canids (dogs and wolf morphotypes) from 14 different archeological sites, throughout Asia and Europe spanning from ca. 12 000 B.P. (end of Upper Palaeolithic) to ca. 4000 B.P. (Bronze Age). We provide evidence of a new variant (R301C) of the Melanocortin 1 receptor (Mc1r) and highlight the presence of the beta-defensin melanistic mutation (CDB103-K locus) on ancient DNA from dog-and wolf-morphotype specimens. We show that the dominant K(B) allele (CBD103), which causes melanism, and R301C (Mc1r), the variant that may cause light hair color, are present as early as the beginning of the Holocene, over 10,000 years ago. These results underline the genetic diversity of prehistoric dogs. This diversity may have partly stemmed not only from the wolf gene pool captured by domestication but also from mutations very likely linked to the relaxation of natural selection pressure occurring in-line with this process.


Asunto(s)
Perros/anatomía & histología , Perros/genética , Color del Cabello/genética , Lobos/anatomía & histología , Lobos/genética , Alelos , Animales , ADN Mitocondrial/genética , Datos de Secuencia Molecular , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA