Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Molecules ; 27(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35163907

RESUMEN

Technologies for mass production require cheap and abundant materials such as ferrous chloride (FeCl2). The literature survey shows the lack of experimental studies to validate theoretical conclusions related to the population of ionic Fe-species in the aqueous FeCl2 solution. Here, we present an in situ X-ray absorption study of the structure of the ionic species in the FeCl2 aqueous solution at different concentrations (1-4 molL-1) and temperatures (25-80 °C). We found that at low temperature and low FeCl2 concentration, the octahedral first coordination sphere around Fe is occupied by one Cl ion at a distance of 2.33 (±0.02) Å and five water molecules at a distance of 2.095 (±0.005) Å. The structure of the ionic complex gradually changes with an increase in temperature and/or concentration. The apical water molecule is substituted by a chlorine ion to yield a neutral Fe[Cl2(H2O)4]0. The observed substitutional mechanism is facilitated by the presence of the intramolecular hydrogen bonds as well as entropic reasons. The transition from the single charged Fe[Cl(H2O)5]+ to the neutral Fe[Cl2(H2O)4]0 causes a significant drop in the solution conductivity, which well correlates with the existing conductivity models.

2.
J Am Chem Soc ; 143(43): 18010-18019, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34689551

RESUMEN

Combining the abundance and inexpensiveness of their constituent elements with their atomic dispersion, atomically dispersed Fe-N-C catalysts represent the most promising alternative to precious-metal-based materials in proton exchange membrane (PEM) fuel cells. Due to the high temperatures involved in their synthesis and the sensitivity of Fe ions toward carbothermal reduction, current synthetic methods are intrinsically limited in type and amount of the desired, catalytically active Fe-N4 sites, and high active site densities have been out of reach (dilemma of Fe-N-C catalysts). We herein identify a paradigm change in the synthesis of Fe-N-C catalysts arising from the developments of other M-N-C single-atom catalysts. Supported by DFT calculations we propose fundamental principles for the synthesis of M-N-C materials. We further exploit the proposed principles in a novel synthetic strategy to surpass the dilemma of Fe-N-C catalysts. The selective formation of tetrapyrrolic Zn-N4 sites in a tailor-made Zn-N-C material is utilized as an active-site imprint for the preparation of a corresponding Fe-N-C catalyst. By successive low- and high-temperature ion exchange reactions, we obtain a phase-pure Fe-N-C catalyst, with a high loading of atomically dispersed Fe (>3 wt %). Moreover, the catalyst is entirely composed of tetrapyrrolic Fe-N4 sites. The density of tetrapyrrolic Fe-N4 sites is more than six times as high as for previously reported tetrapyrrolic single-site Fe-N-C fuel cell catalysts.

3.
Ecotoxicol Environ Saf ; 222: 112493, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34265529

RESUMEN

The contribution of 1,8-dihydroxy naphthalene (DHN) melanin to cadmium (Cd) tolerance in two dark septate endophytes (DSE) of the genus Cadophora with different melanin content was investigated in vitro. The DSE isolate Cad#148 with higher melanin content showed higher tolerance to Cd than the less melanised Cad#149. Melanin synthesis was significantly reduced by Cd in both isolates with uninhibited melanin synthesis, in a dose-dependent manner. Inhibition of melanin synthesis by tricyclazole reduced the relative growth of Cad#148 exposed to Cd and did not affect Cad#149. Cd accumulation was not altered by tricyclazole in the two isolates, but it increased catalase and reduced glutathione reductase activity in more melanised Cad#148, indicating higher stress levels. In contrast, in Cad#149 the enzyme activity was less affected by tricyclazole, indicating a more pronounced role of melanin-independent Cd tolerance mechanisms. Cd ligand environment in fungal mycelia was analysed by extended EXAFS (X-ray absorption fine structure). It revealed that Cd was mainly bound to O- and S-ligands, including hydroxyl, carboxyl, phosphate and thiol groups. A similar proportion of S- and O- ligands (~35% and ~65%) were found in both isolates with uninhibited melanin synthesis. Among O-ligands two types with Cd-O-C- and Cd-O-P- coordination were identified. Tricyclazole altered Cd-O- ligand environment in both fungal isolates by reducing the proportion of Cd-O-C- and increasing the proportion of Cd-O-P coordination. DHN-melanin, among other tolerance mechanisms, significantly contributes to Cd tolerance in more melanised DSE fungi by immobilising Cd to hydroxyl groups and maintaining the integrity of the fungal cell wall.


Asunto(s)
Cadmio , Endófitos , Antioxidantes , Cadmio/toxicidad , Melaninas , Naftalenos
4.
New Phytol ; 226(2): 492-506, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31898330

RESUMEN

Lead (Pb) ranks among the most problematic environmental pollutants. Background contamination of soils is nearly ubiquitous, yet plant Pb accumulation is barely understood. In a survey covering 165 European populations of the metallophyte Arabidopsis halleri, several field samples had indicated Pb hyperaccumulation, offering a chance to dissect plant Pb accumulation. Accumulation of Pb was analysed in A. halleri individuals from contrasting habitats under controlled conditions to rule out aerial deposition as a source of apparent Pb accumulation. Several elemental imaging techniques were employed to study the spatial distribution and ligand environment of Pb. Regardless of genetic background, A. halleri individuals showed higher shoot Pb accumulation than A. thaliana. However, dose-response curves revealed indicator rather than hyperaccumulator behaviour. Xylem sap data and elemental imaging unequivocally demonstrated the in planta mobility of Pb. Highest Pb concentrations were found in epidermal and vascular tissues. Distribution of Pb was distinct from that of the hyperaccumulated metal zinc. Most Pb was bound by oxygen ligands in bidentate coordination. A. halleri accumulates Pb whenever soil conditions render Pb phytoavailable. Considerable Pb accumulation under such circumstances, even in leaves of A. thaliana, strongly suggests that Pb can enter food webs and may pose a food safety risk.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cadmio/metabolismo , Regulación de la Expresión Génica de las Plantas , Plomo , Hojas de la Planta/metabolismo , Zinc/metabolismo
5.
Ecotoxicol Environ Saf ; 184: 109623, 2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31518823

RESUMEN

This study provides information on mercury (Hg) localization, speciation and ligand environment in edible mushrooms: Boletus edulis, B. aereus and Scutiger pes-caprae collected at non-polluted and Hg polluted sites, by LA-ICP-MS, SR-µ-XRF and Hg L3-edge XANES and EXAFS. Mushrooms (especially young ones) collected at Hg polluted sites can contain more than 100 µg Hg g-1 of dry mass. Imaging of the element distribution shows that Hg accumulates mainly in the spore-forming part (hymenium) of the cap. Removal of hymenium before consumption can eliminate more than 50% of accumulated Hg. Mercury is mainly coordinated to di-thiols (43-82%), followed by di-selenols (13-35%) and tetra-thiols (12-20%). Mercury bioavailability, as determined by feeding the mushrooms to Spanish slugs (known metal bioindicators owing to accumulation of metals in their digestive gland), ranged from 4% (S. pes-caprae) to 30% (B. aereus), and decreased with increasing selenium (Se) levels in the mushrooms. Elevated Hg levels in mushrooms fed to the slugs induced toxic effects, but these effects were counteracted with increasing Se concentrations in the mushrooms, pointing to a protective role of Se against Hg toxicity through HgSe complexation. Nevertheless, consumption of the studied mushroom species from Hg polluted sites should be avoided.


Asunto(s)
Agaricales/química , Contaminación de Alimentos/análisis , Compuestos de Mercurio/análisis , Contaminantes del Suelo/análisis , Agaricales/metabolismo , Animales , Disponibilidad Biológica , Monitoreo del Ambiente , Cuerpos Fructíferos de los Hongos/química , Cuerpos Fructíferos de los Hongos/metabolismo , Gastrópodos/metabolismo , Compuestos de Mercurio/metabolismo , Compuestos de Mercurio/toxicidad , Selenio/análisis , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad
6.
J Am Chem Soc ; 139(36): 12837-12846, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28810123

RESUMEN

Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

7.
J Synchrotron Radiat ; 22(5): 1215-26, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26289273

RESUMEN

Klebsiella oxytoca BAS-10 ferments citrate to acetic acid and CO2, and secretes a specific exopolysaccharide (EPS), which is able to bind different metallic species. These biomaterials may be used for different biotechnological purposes, including applications as innovative green biogenerated catalysts. In production of biogenerated Pd species, the Fe(III) as ferric citrate is added to anaerobic culture of K. oxytoca BAS-10, in the presence of palladium species, to increase the EPS secretion and improve Pd-EPS yield. In this process, bi-metallic (FePd-EPS) biomaterials were produced for the first time. The morphology of bi-metallic EPS, and the chemical state of the two metals in the FePd-EPS, are investigated by transmission electron microscopy, Fourier transform infra-red spectroscopy, micro-X-ray fluorescence, and X-ray absorption spectroscopy methods (XANES and EXAFS), and compared with mono-metallic Pd-EPS and Fe-EPS complexes. Iron in FePd-EPS is in the mineralized form of iron oxides/hydroxides, predominantly in the form of Fe(3+), with a small amount of Fe(2+) in the structure, most probably a mixture of different nano-crystalline iron oxides and hydroxides, as in mono-metallic Fe-EPS. Palladium is found as Pd(0) in the form of metallic nanoparticles with face-centred cubic structure in both bi-metallic (FePd-EPS) and mono-metallic (Pd-EPS) species. In bi-metallic species, Pd and Fe nanoparticles agglomerate in larger clusters, but they remain spatially separated. The catalytic ability of bi-metallic species (FePd-EPS) in a hydrodechlorination reaction is improved in comparison with mono-metallic Pd-EPS.


Asunto(s)
Hierro/análisis , Klebsiella oxytoca/metabolismo , Paladio/análisis , Polisacáridos Bacterianos/química , Anaerobiosis , Fermentación , Compuestos Férricos/química , Microscopía Electrónica , Nanopartículas , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Sincrotrones , Espectroscopía de Absorción de Rayos X
8.
Plant Cell Environ ; 37(6): 1299-320, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24237383

RESUMEN

Cadmium and zinc share many similar physiochemical properties, but their compartmentation, complexation and impact on other mineral element distribution in plant tissues may drastically differ. In this study, we address the impact of 10 µm Cd or 50 µm Zn treatments on ion distribution in leaves of a metallicolous population of the non-hyperaccumulating species Zygophyllum fabago at tissue and cell level, and the consequences on the plant response through a combined physiological, proteomic and metabolite approach. Micro-proton-induced X-ray emission and laser ablation inductively coupled mass spectrometry analyses indicated hot spots of Cd concentrations in the vicinity of vascular bundles in response to Cd treatment, essentially bound to S-containing compounds as revealed by extended X-ray absorption fine structure and non-protein thiol compounds analyses. A preferential accumulation of Zn occurred in vascular bundle and spongy mesophyll in response to Zn treatment, and was mainly bound to O/N-ligands. Leaf proteomics and physiological status evidenced a protection of photosynthetically active tissues and the maintenance of cell turgor through specific distribution and complexation of toxic ions, reallocation of some essential elements, synthesis of proteins involved in photosynthetic apparatus or C-metabolism, and metabolite synthesis with some specificities regarding the considered heavy metal treatment.


Asunto(s)
Cadmio/metabolismo , Zinc/metabolismo , Zygophyllum/metabolismo , Transporte Biológico , Cadmio/análisis , Clorofila/metabolismo , Terapia por Láser , Espectrometría de Masas , Fotosíntesis , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Proteoma , Espectrometría por Rayos X , Zinc/análisis
9.
Chemphyschem ; 15(5): 894-904, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24497200

RESUMEN

Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long-cycle-life lithium-sulfur (Li-S) batteries. To achieve this goal, new analytical tools need to be developed. Herein, sulfur K-edge X-ray absorption near-edge structure (XANES) and (6,7) Li magic-angle spinning (MAS) NMR studies on a Li-S battery and its sulfur components are reported. The characterization of different stoichiometric mixtures of sulfur and lithium compounds (polysulfides), synthesized through a chemical route with all-sulfur-based components in the Li-S battery (sulfur and electrolyte), enables the understanding of changes in the batteries measured in postmortem mode and in operando mode. A detailed XANES analysis is performed on different battery components (cathode composite and separator). The relative amounts of each sulfur compound in the cathode and separator are determined precisely, according to the linear combination fit of the XANES spectra, by using reference compounds. Complementary information about the lithium species within the cathode are obtained by using (7) Li MAS NMR spectroscopy. The setup for the in operando XANES measurements can be viewed as a valuable analytical tool that can aid the understanding of the sulfur environment in Li-S batteries.

10.
Dalton Trans ; 53(5): 2082-2097, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38180044

RESUMEN

CeNiO3 has been reported in the literature in the last few years as a novel LnNiO3 compound with promising applications in different catalytic fields, but its structure has not been correctly reported so far. In this research, CeNiO3 (RB1), CeO2 and NiO have been synthesized in a nanocrystalline form using a modified citrate aqueous sol-gel route. A direct comparison between the equimolar physical mixture (n(CeO2) : n(NiO) = 1 : 1) and compound RB1 was made. Their structural differences were investigated by laboratory powder X-ray diffraction (PXRD), selected area electron diffraction (SAED), transmission electron microscopy (TEM) with an energy-dispersive X-ray spectroscopy (EDS) detector, and Raman spectroscopy. The surface of the compounds was analyzed by X-ray photoelectron spectroscopy (XPS), while the thermal behaviour was explored by thermogravimetric analysis (TGA). Their magnetic properties were also investigated with the aim of exploring the differences between these two compounds. There were clear differences between the physical mixture of CeO2 + NiO and RB1 presented by all of these employed methods. Synchrotron methods, such as atomic pair distribution function analysis (PDF), X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), were used to explore the structure of RB1 in more detail. Three different models for the structural solution of RB1 were proposed. One structural solution proposes that RB1 is a single-phase pyrochlore compound (Ce2Ni2O7) while the other two solutions suggest that RB1 is a two-phase system of either CeO2 + NiO or Ce1-xNixO2 and NiO.

11.
J Exp Bot ; 64(11): 3249-60, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23918965

RESUMEN

Iron insufficiency is a worldwide problem in human diets. In cereals like wheat, the bran layer of the grains is an important source of iron. However, the dietary availability of iron in wheat flour is limited due to the loss of the iron-rich bran during milling and processing and the presence of anti-nutrients like phytic acid that keep iron strongly chelated in the grain. The present study investigated the localization of iron and phosphorus in grain tissues of wheat genotypes with contrasting grain iron content using synchrotron-based micro-X-ray fluorescence (micro-XRF) and micro-proton-induced X-ray emission (micro-PIXE). X-ray absorption near-edge spectroscopy (XANES) was employed to determine the proportion of divalent and trivalent forms of Fe in the grains. It revealed the abundance of oxygen, phosphorus, and sulphur in the local chemical environment of Fe in grains, as Fe-O-P-R and Fe-O-S-R coordination. Contrasting differences were noticed in tissue-specific relative localization of Fe, P, and S among the different genotypes, suggesting a possible effect of localization pattern on iron bioavailability. The current study reports the shift in iron distribution from maternal to filial tissues of grains during the evolution of wheat from its wild relatives to the present-day cultivated varieties, and thus suggests the value of detailed physical localization studies in varietal improvement programmes for food crops.


Asunto(s)
Grano Comestible/metabolismo , Hierro/metabolismo , Triticum/metabolismo , Fósforo/metabolismo , Azufre/metabolismo
12.
Sci Rep ; 13(1): 1092, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658162

RESUMEN

Barium hexaferrite nanoplatelets (BHF NPLs) are permanent nanomagnets with the magnetic easy axis aligned perpendicular to their basal plane. By combining this specific property with optimised surface chemistry, novel functional materials were developed, e.g., ferromagnetic ferrofluids and porous nanomagnets. We compared the interaction of chemically different phosphonic acids, hydrophobic and hydrophilic with 1-4 phosphonic groups, with BHF NPLs. A decrease in the saturation magnetisation after functionalising the BHF NPLs was correlated with the mass fraction of the nonmagnetic coating, whereas the saturation magnetisation of the NPLs coated with a tetraphosphonic acid at 80 °C was significantly lower than expected. We showed that such a substantial decrease in the saturation magnetisation originates from the disintegration of BHF NPLs, which was observed with atomic-resolution scanning transmission electron microscopy and confirmed by a computational study based on state-of-the-art first-principles calculations. Fe K-edge XANES (X-ray absorption near-edge structure) and EXAFS (Extended X-ray absorption fine structure) combined with Fourier-transformed infrared (FTIR) spectroscopy confirmed the formation of an Fe-phosphonate complex on the partly decomposed NPLs. Comparing our results with other functionalised magnetic nanoparticles confirmed that saturation magnetisation can be exploited to identify the disintegration of magnetic nanoparticles when insoluble disintegration products are formed.

13.
ACS Appl Mater Interfaces ; 15(23): 28747-28762, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37264972

RESUMEN

A γ-alumina support functionalized with transition metals is one of the most widely used industrial catalysts for the total oxidation of volatile organic compounds (VOCs) as air pollutants at higher temperatures (280-450 °C). By rational design of a bimetal CuFe-γ-alumina catalyst, synthesized from a dawsonite alumina precursor, the activity in total oxidation of toluene as a model VOC at a lower temperature (200-380 °C) is achieved. A fundamental understanding of the catalyst and the reaction mechanism is elucidated by advanced microscopic and spectroscopic characterizations as well as by temperature-programmed surface techniques. The nature of the metal-support bonding and the optimal abundance between Cu-O-Al and Fe-O-Al species in the catalysts leads to synergistic catalytic activity promoted by small amounts of iron (Fe/Al = 0.005). The change in the metal oxide-cluster alumina interface is related to the nature of the surfaces to which the Cu atoms attach. In the most active catalyst, the CuO6 octahedra are attached to 4 Al atoms, while in the less active catalyst, they are attached to only 3 Al atoms. The oxidation of toluene occurs via the Langmuir-Hinshelwood mechanism. The presented material introduces a prospective family of low-cost and scalable oxidation catalysts with superior efficiency at lower temperatures.

14.
Biometals ; 25(5): 875-81, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22585084

RESUMEN

A strain of Klebsiella oxytoca, isolated from acid pyrite-mine drainage, characteristically produces a ferric hydrogel, consisting of branched heptasaccharide repeating units exopolysaccharide (EPS), with metal content of 36 wt%. The high content of iron in the EPS matrix cannot be explained by a simple ferric ion bond to the sugar skeleton. The bio-generated Fe-EPS is investigated by X-ray absorption spectroscopy. Fe K-edge XANES analysis shows that iron is mostly in trivalent form, with a non-negligible amount of Fe(2+) in the structure. The Fe EXAFS results indicate that iron in the sample is in a mineralized form, prevalently in the form of nano-sized particles of iron oxides/hydroxides, most probably a mixture of different nano-crystalline forms. TEM shows that these nanoparticles are located in the interior of the EPS matrix, as in ferritin. The strain produces Fe-EPS to modulate Fe-ions uptake from the cytoplasm to avoid iron toxicity under anaerobic conditions. This microbial material is potentially applicable as iron regulator.


Asunto(s)
Hierro/química , Klebsiella oxytoca/metabolismo , Nanopartículas del Metal/química , Polisacáridos Bacterianos/química , Anaerobiosis , Hierro/metabolismo , Klebsiella oxytoca/ultraestructura , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Polisacáridos Bacterianos/biosíntesis , Espectroscopía de Absorción de Rayos X
15.
ACS Appl Mater Interfaces ; 14(28): 31862-31878, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35801412

RESUMEN

Dry reforming of methane (DRM) is a promising way to convert methane and carbon dioxide into H2 and CO (syngas). CeO2 nanorods, nanocubes, and nanospheres were decorated with 1-4 wt % Ni. The materials were structurally characterized using TEM and in situ XANES/EXAFS. The CO2 activation was analyzed by DFT and temperature-programmed techniques combined with MS-DRIFTS. Synthesized CeO2 morphologies expose {111} and {100} terminating facets, varying the strength of the CO2 interaction and redox properties, which influence the CO2 activation. Temperature-programmed CO2 DRIFTS analysis revealed that under hydrogen-lean conditions mono- and bidentate carbonates are hydrogenated to formate intermediates, which decompose to H2O and CO. In excess hydrogen, methane is the preferred reaction product. The CeO2 cubes favor the formation of a polydentate carbonate species, which is an inert spectator during DRM at 500 °C. Polydentate covers a considerable fraction of ceria's surface, resulting in less-abundant surface sites for CO2 dissociation.

16.
Foods ; 11(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35327271

RESUMEN

The microalgae Spirulina may be a popular dietary supplement rich in essential nutrients and vitamins, but oversight of the supplement industry, in general, remains limited, and increasing incidents of adulteration, misbranding, and undeclared ingredients together with misleading claims create potential risks. In response, this study characterized the elemental, amino acid and fatty acid content of commercially available Spirulina supplements in Slovenia using EDXRF, ICP-MS and GC-MS and compared the results with their nutritional declaration. The gathered data confirm that Spirulina supplements are a good source of calcium (0.15 to 29.5% of RDA), phosphorous (3.36-26.7% of RDA), potassium (0.5 to 7.69% of RDA) and selenium (0.01 to 38.6% of RDA) when consumed within recommended amounts. However, although iron contents were relatively high (7.64 to 316% of RDA), the actual bioavailability of iron was much lower since it was mainly present as the ferric cation. This study also confirms that pure Spirulina supplements are a good source of essential and non-essential amino acids, and ω-6 but not ω-3 polyunsaturated fatty acids. The presence of additives resulted in significant variation in nutrient content and, in some instances, lower product quality. Moreover, a high proportion (86.7%) of inappropriate declarations regarding the elemental content was observed. Overall, the study conclusions underline the need for a stricter control system for Spirulina-based supplements.

17.
Nanoscale Adv ; 4(10): 2321-2331, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-36133702

RESUMEN

Catalyst design is crucial for improving catalytic activity and product selectivity. In a bifunctional Ni/ZSM-5 zeolite type catalyst, catalytic properties are usually tuned via varying Al and Ni contents. While changes in acid properties associated with Al sites are usually closely investigated, Ni phases, however, receive inadequate attention. Herein, we present a systematic structural study of Ni in the Ni/ZSM-5 materials by using Ni K-edge XANES and EXAFS analyses, complemented by XRD and TEM, to resolve the changes in the local environment of Ni species induced by the different Al contents of the parent ZSM-5 prepared by a "green", template free technique. Ni species in Ni/ZSM-5 exist as NiO crystals (3-50 nm) and as charge compensating Ni2+ cations. The Ni K-edge XANES and EXAFS results enabled the quantification of Ni-containing species. At a low Al to Si ratio (n Al/n Si ≤ 0.04), the NiO nanoparticles predominate in the samples and account for over 65% of Ni phases. However, NiO is outnumbered by Ni2+ cations attached to the zeolite framework in ZSM-5 with a high Al to Si ratio (n Al/n Si = 0.05) due to a higher number of framework negative charges imparted by Al. The obtained results show that the number of highly reducible and active NiO crystals is strongly correlated with the framework Al sites present in ZSM-5 zeolites, which depend greatly on the synthesis conditions. Therefore, this kind of study is beneficial for any further investigation of the catalytic activities of Ni/ZSM-5 and other metal-modified bifunctional catalysts.

18.
J Phys Chem C Nanomater Interfaces ; 126(12): 5435-5442, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35392436

RESUMEN

X-ray Raman spectroscopy (XRS) is an emerging spectroscopic technique that utilizes inelastic scattering of hard X-rays to study X-ray absorption edges of low Z elements in bulk material. It was used to identify and quantify the amount of carbonyl bonds in a cathode sample, in order to track the redox reaction inside metal-organic batteries during the charge/discharge cycle. XRS was used to record the oxygen K-edge absorption spectra of organic polymer cathodes from different multivalent metal-organic batteries. The amount of carbonyl bond in each sample was determined by modeling the oxygen K-edge XRS spectra with the linear combination of two reference compounds that mimicked the fully charged and the fully discharged phases of the battery. To interpret experimental XRS spectra, theoretical calculations of oxygen K-edge absorption spectra based on density functional theory were performed. Overall, a good agreement between the amount of carbonyl bond present during different stages of battery cycle, calculated from linear combination of standards, and the amount obtained from electrochemical characterization based on measured capacity was achieved. The electrochemical mechanism in all studied batteries was confirmed to be a reduction of double carbonyl bond and the intermediate anion was identified with the help of theoretical calculations. X-ray Raman spectroscopy of the oxygen K-edge was shown to be a viable characterization technique for accurate tracking of the redox reaction inside metal-organic batteries.

19.
J Synchrotron Radiat ; 18(Pt 4): 557-63, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21685671

RESUMEN

The approximate barium X-ray atomic absorption in the energy region of L-edges is reconstructed from the absorption spectrum of an aqueous solution of BaCl(2). The result is corroborated by comparison with pure atomic absorption spectra of neighbour elements Xe and Cs. The application of the atomic absorption signal as a proper EXAFS background is demonstrated and discussed in the analysis of Ba hexaferrite nanoparticles with a very weak structural signal. The essential gain is found in the decrease of uncertainty intervals of structural parameters and their correlations. A simple analytical model of the absorption background for the practical EXAFS analysis is demonstrated.

20.
J Environ Monit ; 13(6): 1625-33, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21547296

RESUMEN

A soil with a relatively high Fe content (2.82% [w/w]) was loaded for up to one year with As(v) by equilibrating it with a solution containing 1000 mg l(-1) As(v) at a soil mass-to-solution ratio of 0.1 kg l(-1). The incorporation of As(v) into the soil and its distribution over the soil phases were monitored by sampling at strategic time intervals using an operationally defined five-step sequential extraction procedure (Wenzel et al., Anal. Chim. Acta, 2001, 436, 309) and subsequent As measurement. A multiple kinetic Langmuir model was developed to retrieve the dynamic parameters (adsorption and desorption rate constants, capacities and Langmuir equilibrium constants) for each of the soil phases by numerical fitting of the experimental adsorption data to the model. Under the equilibration conditions used the adsorption rate constants for all five operationally defined soil phases were very similar but the desorption rate constants decreased by a factor of ca. 150 from soil phase 1 (non-specifically sorbed As) to 5 (residual phases). This implies that As(v) incorporation "deeper" into the soil leads to stronger binding which is associated with the Langmuir equilibrium constants (adsorption rate constants/desorption rate constants). Equilibration of the soil with As(v) was complete in ca. 10 days with As(v) predominantly bound to soil phase 2 (specifically sorbed As) and soil phase 3 (amorphous and poorly crystalline hydrous oxides). X-Ray absorption spectroscopy techniques revealed that these binding characteristics may be related to adsorption of As(v) on Si- and/or Al-containing structures and natural hydrous iron oxide (HFO) surface sites, respectively. Since the model is independent of the initial As(v) concentration in the solution and the soil mass-to-solution ratio, the behaviour of the thus characterized soil-As(v) system can be predicted for a range of conditions. Simulations showed that in an accidental As(v) spill the soil studied would actively scavenge As(v) by instantaneous adsorption onto all soil phases followed by redistribution of As(v) from weaker binding sites to stronger ones over time.


Asunto(s)
Arseniatos/química , Modelos Químicos , Contaminantes del Suelo/química , Adsorción , Arseniatos/análisis , Monitoreo del Ambiente , Hierro/química , Cinética , Suelo/química , Contaminantes del Suelo/análisis , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA