RESUMEN
Osteocytes respond to mechanical forces controlling osteoblast and osteoclast function. Mechanical stimulation decreases osteocyte apoptosis and promotes bone formation. Primary cilia have been described as potential mechanosensors in bone cells. Certain osteogenic responses induced by fluid flow (FF) in vitro are decreased by primary cilia inhibition in MLO-Y4 osteocytes. The parathyroid hormone (PTH) receptor type 1 (PTH1R) modulates osteoblast, osteoclast, and osteocyte effects upon activation by PTH or PTH-related protein (PTHrP) in osteoblastic cells. Moreover, some actions of PTH1R seem to be triggered directly by mechanical stimulation. We hypothesize that PTH1R forms a signaling complex in the primary cilium that is essential for mechanotransduction in osteocytes and affects osteocyte-osteoclast communication. MLO-Y4 osteocytes were stimulated by FF or PTHrP (1-37). PTH1R and primary cilia signaling were abrogated using PTH1R or primary cilia specific siRNAs or inhibitors, respectively. Conditioned media obtained from mechanically- or PTHrP-stimulated MLO-Y4 cells inhibited the migration of preosteoclastic cells and osteoclast differentiation. Redistribution of PTH1R along the entire cilium was observed in mechanically stimulated MLO-Y4 osteocytic cells. Preincubation of MLO-Y4 cells with the Gli-1 antagonist, the adenylate cyclase inhibitor (SQ22536), or with the phospholipase C inhibitor (U73122), affected the migration of osteoclast precursors and osteoclastogenesis. Proteomic analysis and neutralizing experiments showed that FF and PTH1R activation control osteoclast function through the modulation of C-X-C Motif Chemokine Ligand 5 (CXCL5) and interleukin-6 (IL-6) secretion in osteocytes. These novel findings indicate that both primary cilium and PTH1R are necessary in osteocytes for proper communication with osteoclasts and show that mechanical stimulation inhibits osteoclast recruitment and differentiation through CXCL5, while PTH1R activation regulate these processes via IL-6.
Asunto(s)
Interleucina-6 , Osteoclastos , Inhibidores de Adenilato Ciclasa/farmacología , Quimiocinas/metabolismo , Cilios/metabolismo , Medios de Cultivo Condicionados/metabolismo , Interleucina-6/metabolismo , Ligandos , Mecanotransducción Celular , Osteoclastos/metabolismo , Osteocitos/metabolismo , Hormona Paratiroidea/metabolismo , Hormona Paratiroidea/farmacología , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Proteómica , Ligando RANK/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/genética , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Fosfolipasas de Tipo C/metabolismoRESUMEN
Mechanical stimulation of primary cilia in osteocytes and osteoblasts has been proposed as a mechanism that participates in bone cell survival and skeletal remodeling. Among different signaling pathways stimulated by primary cilia, the hedgehog signaling pathway has been associated with the regulation of bone development. Parathyroid hormone (PTH)-related protein (PTHrP) signaling through PTH 1 receptor (PTH1R) also regulates bone cell survival and remodeling and has been associated with the hedgehog pathway during skeletal development. We hypothesize that primary cilia and PTH1R concomitantly regulate bone remodeling and cell survival and aim to describe the mechanisms that mediate these effects in osteocytes and osteoblasts. Colocalization of PTH1R with primary cilia was observed in control and PTHrP-stimulated MLO-Y4 osteocytic and MC3T3-E1 osteoblastic cells. Activation of PTH1R by PTHrP increased cell survival, osteoblast gene expression (osteocalcin, runt-related transcription factor 2, and bone alkaline phosphatase) and the expression of the hedgehog transcription factor Gli-1 in osteocytes and osteoblasts. These effects were abrogated by small interfering RNAs for the primary cilia protein IFT88 or by a primary cilia specific inhibitor (chloral hydrate). Preincubation of MLO-Y4 osteocytic and MC3T3-E1 osteoblastic cells with the Gli-1 antagonist GANT61 inhibited PTHrP prosurvival actions but did not affect PTHrP-induced overexpression of osteogenic genes. Mechanical stimulation by fluid flow increased the number of primary cilia-presenting cells in osteocytes and osteoblasts. We propose that PTH1R activation induces prosurvival actions via primary cilia- and Gli-1-dependent mechanism and modulates osteogenic responses via a primary cilia-dependent and Gli-1-independent pathway in osteocytes and osteoblasts.
Asunto(s)
Cilios/metabolismo , Osteocitos/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Células 3T3 , Animales , Desarrollo Óseo/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Ratones , Osteoblastos/metabolismo , Osteogénesis/fisiología , Transducción de SeñalRESUMEN
PURPOSE OF REVIEW: Diabetes mellitus is a prevalent chronic disease affecting millions of people in the world. Bone fragility is a complication found in diabetic patients. Although osteoblasts and osteoclasts are directly affected by diabetes, herein we focus on how the diabetic state-based on hyperglycemia and accumulation of advanced glycation end products among other features-impairs osteocyte functions exerting deleterious effects on bone. RECENT FINDINGS: In the last years, several studies described that diabetic conditions cause morphological modifications on lacunar-canalicular system, alterations on osteocyte mechanoreceptors and intracellular pathways and on osteocyte communication with other cells through the secretion of proteins such as sclerostin or RANKL. This article gives an overview of events occurring in diabetic osteocytes. In particular, mechanical responses seem to be seriously affected in these conditions, suggesting that mechanical sensibility could be a target for future research in the field.
Asunto(s)
Diabetes Mellitus/fisiopatología , Osteocitos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Fenómenos Biomecánicos , Densidad Ósea , Diabetes Mellitus/metabolismo , Diabetes Mellitus Experimental/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismoRESUMEN
Advanced prostate cancer cells preferentially metastasize to bone by acquiring a bone phenotype that allows metastatic cells to thrive in the skeletal environment. Identification of factors that promote the expression of ectopic bone genes-process known as osteomimicry-leading to tumor progression is crucial to prevent and treat metastatic prostate cancer and prolong life expectancy for patients. Here, we identify the extracelular matrix protein mindin in the secretome of prostate adenocarcinoma cells and show that mindin overexpression in human and mouse TRAMP-C1-induced prostate tumors correlates with upregulated levels of bone-related genes in the tumorigenic prostate tissues. Moreover, mindin silencing decreased osteomimicry in adenocarcinoma cells and in the prostate tumor mice model, as well as reduced tumor cell proliferation, migration and adhesion to bone cells. Inhibition of the extracellular signal-regulated kinase 1/2 (ERK 1/2) phosphorylation decreased the proliferative, migratory and pro-adhesion actions of mindin on prostate tumor cells. In addition, conditioned media obtained by crosstalk stimulation of either osteocytes or osteoblasts with the secretome of TRAMP-C1 cells promoted osteomimicry in prostate tumor cells; an effect inhibited by mindin silencing of TRAMP-C1 cells. In vivo, tibiae of primary tumor-bearing mice overexpressed the pro-angiogenic and pro-metastattic factor vascular endothelial growth factor receptor 2 (VEGFR2) in a mindin-dependent manner. Our findings indicate that mindin is a novel regulator of osteomimicry in prostate tumors and potentially mediates tumor-bone cell crosstalk, suggesting its promising role as a target to inhibit bone metastases.
Asunto(s)
Adenocarcinoma/patología , Neoplasias Óseas/secundario , Huesos/patología , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/patología , Animales , Neoplasias Óseas/patología , Huesos/citología , Carcinogénesis/patología , Adhesión Celular , Comunicación Celular , Línea Celular Tumoral/trasplante , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Proteínas de la Matriz Extracelular/genética , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Proteínas de Neoplasias/genética , Osteoblastos/patología , Osteocitos/patología , Fosforilación , Próstata/citología , Próstata/patología , Regulación hacia Arriba , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor.
Asunto(s)
Actinas/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Nexinas de Clasificación/metabolismo , Actinas/química , Animales , Células CHO , Cricetulus , Endosomas/metabolismo , Células HEK293 , Humanos , Redes y Vías Metabólicas , Simulación de Dinámica Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Dominios PDZ , Unión Proteica , Subunidades de Proteína , Transporte de Proteínas , Proteolisis , Receptor de Hormona Paratiroídea Tipo 1/química , Receptor de Hormona Paratiroídea Tipo 1/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nexinas de Clasificación/química , Nexinas de Clasificación/genéticaRESUMEN
Oxidative damage is an important contributor to the morphological and functional changes in osteoporotic bone. Aging increases the levels of reactive oxygen species (ROS) that cause oxidative stress and induce osteoblast apoptosis. ROS modify several signaling responses, including mitogen-activated protein kinase (MAPK) activation, related to cell survival. Both parathyroid hormone (PTH) and its bone counterpart, PTH-related protein (PTHrP), can regulate MAPK activation by modulating MAPK phosphatase-1 (MKP1). Thus, we hypothesized that PTHrP might protect osteoblasts from ROS-induced apoptosis by targeting MKP1. In osteoblastic MC3T3-E1 and MG-63 cells, H2 O2 triggered p38, JNK, ERK and p66Shc phosphorylation, and cell apoptosis. Meanwhile, PTHrP (1-37) rapidly but transiently increased ERK and Akt phosphorylation without affecting p38, JNK, or p66Shc activation. H2 O2 -induced p38 and ERK phosphorylation and apoptosis were both decreased by pre-treatment with specific kinase inhibitors or PTHrP (1-37) in both osteoblastic cell types. These dephosphorylating and prosurvival actions of PTHrP (1-37) were prevented by a phosphatase inhibitor cocktail, the phosphatase MKP1 inhibitor sanguinarine or a MKP1 siRNA. PTHrP (1-37) promptly enhanced MKP1 protein and gene expression and MKP1-dependent catalase activity in osteoblastic cells. Furthermore, exposure to PTHrP (1-37) adsorbed in an implanted hydroxyapatite-based ceramic into a tibial defect in aging rats increased MKP1 and catalase gene expression in the healing bone area. Our findings demonstrate that PTHrP counteracts the pro-apoptotic actions of ROS by a mechanism dependent on MKP1-induced dephosphorylation of MAPKs in osteoblasts. J. Cell. Physiol. 232: 785-796, 2017. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Citoprotección/efectos de los fármacos , Fosfatasa 1 de Especificidad Dual/metabolismo , Osteoblastos/enzimología , Osteoblastos/patología , Estrés Oxidativo/efectos de los fármacos , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Animales , Apoptosis/efectos de los fármacos , Huesos/efectos de los fármacos , Catalasa/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Masculino , Ratones , Osteoblastos/efectos de los fármacos , Fosforilación/efectos de los fármacos , Ratas Wistar , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
Reactive Oxygen Species (ROS) increase during aging, potentially affecting many tissues including brain, heart, and bone. ROS alter signaling pathways and constitute potential therapeutic targets to limit oxidative damaging effects in aging-associated diseases. Parathyroid hormone receptors (PTHR) are widely expressed and PTH is the only anabolic therapy for osteoporosis. The effects of oxidative stress on PTHR signaling and trafficking have not been elucidated. Here, we used Fluorescence Resonance Energy Transfer (FRET)-based cAMP, ERK, and calcium fluorescent biosensors to analyze the effects of ROS on PTHR signaling and trafficking by live-cell imaging. PTHR internalization and recycling were measured in HEK-293 cells stably transfected with HA-PTHR. PTH increased cAMP production, ERK phosphorylation, and elevated intracellular calcium. Pre-incubation with H2O2 reduced all PTH-dependent signaling pathways. These inhibitory effects were not a result of PTH oxidation since PTH incubated with H2O2 triggered similar responses. PTH promoted internalization and recycling of the PTHR. Both events were significantly reduced by H2O2 pre-incubation. These findings highlight the role of oxidation on PTHR signaling and trafficking, and suggest the relevance of ROS as a putative target in diseases associated with oxidative stress such as age-related osteoporosis.
Asunto(s)
Estrés Oxidativo , Receptores de Hormona Paratiroidea/metabolismo , Transducción de Señal , AMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Peróxido de Hidrógeno/metabolismo , Transporte de ProteínasRESUMEN
Many G protein-coupled receptors (GPCR) exert patterns of cell-specific signaling and function. Mounting evidence now supports the view that cytoplasmic adapter proteins contribute critically to this behavior. Adapter proteins recognize highly conserved motifs such as those for Src homology 3 (SH3), phosphotyrosine-binding (PTB), and postsynaptic density 95/discs-large/zona occludens (PDZ) docking sequences in candidate GPCRs. Here we review the behavior of the Na+/H+ exchange regulatory factor (NHERF) family of PDZ adapter proteins on GPCR signalling, trafficking, and function. Structural determinants of NHERF proteins that allow them to recognize targeted GPCRs are considered. NHERF1 and NHERF2 are capable also of modifying the assembled complex of accessory proteins such as ß-arrestins, which have been implicated in regulating GPCR signaling. In addition, NHERF1 and NHERF2 modulate GPCR signaling by altering the G protein to which the receptor binds or affect other regulatory proteins that affect GTPase activity, protein kinase A, phospholipase C, or modify downstream signaling events. Small molecules targeting the site of NHERF1-GPCR interaction are being developed and may become important and selective drug candidates.
Asunto(s)
Factores de Intercambio de Guanina Nucleótido/fisiología , Receptores Acoplados a Proteínas G/fisiología , Intercambiadores de Sodio-Hidrógeno/fisiología , Humanos , Estructura Molecular , Transducción de SeñalRESUMEN
Runx2 is a key transcription factor in bone development regulating several processes, including osteoblast apoptosis. The antiapoptotic effects of parathyroid hormone (PTH) in osteoblasts depend on Runx2-mediated transcription of prosurvival genes. In the kidney, PTH-related protein (PTHrP) promotes tubulointerstitial cell survival by activating the PTH/PTHrP type 1 receptor. We found that Runx2 is expressed in renal tubuloepithelial MCT and HK2 cell lines in vitro and in the mouse kidney tubuloepithelium in vivo. The 1-36 amino-acid fragment of PTHrP was found to increase the expression and nuclear translocation of Runx2 in both cell lines in a dose- and time-dependent manner. PTHrP(1-36) protected renal tubuloepithelial cells from folic acid toxicity and serum deprivation, an effect inhibited by a dominant-negative Runx2 construct or a Runx2 siRNA. Furthermore, PTHrP(1-36) upregulated the antiapoptotic proteins Bcl-2 and osteopontin, and these effects were abolished by Runx2 siRNA. Runx2, osteopontin, and Bcl-2 were increased in tubuloepithelial cells from transgenic mice with PTHrP overexpression and in wild-type mice with acute or chronic renal failure. Thus, PTHrP regulates renal tubuloepithelial cell survival via Runx2 in the mammalian kidney.
Asunto(s)
Apoptosis , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Células Epiteliales/metabolismo , Túbulos Renales Proximales/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Fragmentos de Péptidos/metabolismo , Transporte Activo de Núcleo Celular , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Ácido Fólico/toxicidad , Humanos , Fallo Renal Crónico/genética , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/patología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/patología , Ratones , Ratones Transgénicos , Osteopontina/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , TransfecciónRESUMEN
The generation of cAMP by G protein-coupled receptors (GPCRs) and its termination are currently thought to occur exclusively at the plasma membrane of cells. Under existing models of receptor regulation, this signal is primarily restricted by desensitization of the receptors through their binding to ß-arrestins. However, this paradigm is not consistent with recent observations that the parathyroid hormone receptor type 1 (PTHR) continues to stimulate cAMP production even after receptor internalization, as ß-arrestins are known to rapidly bind and internalize activated PTHR. Here we show that binding to ß-arrestin1 prolongs rather than terminates the generation of cAMP by PTHR, and that cAMP generation correlates with the persistence of arrestin-receptor complexes on endosomes. PTHR signaling is instead turned off by the retromer complex, which regulates the movement of internalized receptor from endosomes to the Golgi apparatus. Thus, binding by the retromer complex regulates the sustained generation of cAMP triggered by an internalized GPCR.
Asunto(s)
AMP Cíclico/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Arrestinas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Modelos Biológicos , Receptor de Hormona Paratiroídea Tipo 1/genética , Transducción de Señal , Factores de Tiempo , beta-ArrestinasRESUMEN
Na/H exchanger regulatory factor-1 (NHERF1) is a cytoplasmic PDZ (postsynaptic density 95/disc large/zona occludens) protein that assembles macromolecular complexes and determines the localization, trafficking, and signaling of select G protein-coupled receptors and other membrane-delimited proteins. The parathyroid hormone receptor (PTHR), which regulates mineral ion homeostasis and bone turnover, is a G protein-coupled receptor harboring a PDZ-binding motif that enables association with NHERF1 and tethering to the actin cytoskeleton. NHERF1 interactions with the PTHR modify its trafficking and signaling. Here, we characterized by live cell imaging the mechanism whereby NHERF1 coordinates the interactions of multiple proteins, as well as the fate of NHERF1 itself upon receptor activation. Upon PTHR stimulation, NHERF1 rapidly dissociates from the receptor and induces receptor aggregation in long lasting clusters that are enriched with the actin-binding protein ezrin and with clathrin. After NHERF1 dissociates from the PTHR, ezrin then directly interacts with the PTHR to stabilize the PTHR at the cell membrane. Recruitment of ß-arrestins to the PTHR is delayed until NHERF1 dissociates from the receptor, which is then trafficked to clathrin for internalization. The ability of NHERF to interact dynamically with the PTHR and cognate adapter proteins regulates receptor trafficking and signaling in a spatially and temporally coordinated manner.
Asunto(s)
Arrestina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Fosfoproteínas/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Endocitosis , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Modelos Biológicos , Osteosarcoma/metabolismo , Hormona Paratiroidea/metabolismo , Unión Proteica , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Factores de TiempoRESUMEN
Primary cilia are subcellular structures specialized in sensing different stimuli in a diversity of cell types. In bone, the primary cilium is involved in mechanical sensing and transduction of signals that regulate the behavior of mesenchymal osteoprogenitors, osteoblasts and osteocytes. To perform its functions, the primary cilium modulates a plethora of molecules including those stimulated by the parathyroid hormone (PTH) receptor type I (PTH1R), a master regulator of osteogenesis. Binding of the agonists PTH or PTH-related protein (PTHrP) to the PTH1R or direct agonist-independent stimulation of the receptor activate PTH1R signaling pathways. In turn, activation of PTH1R leads to regulation of bone formation and remodeling. Herein, we describe the structure, function and molecular partners of primary cilia in the context of bone, playing special attention to those signaling pathways that are mediated directly or indirectly by PTH1R in association with primary cilia during the process of osteogenesis.
Asunto(s)
Osteogénesis , Hormona Paratiroidea , Cilios/metabolismo , Humanos , Osteoblastos , Hormona Paratiroidea/química , Hormona Paratiroidea/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/metabolismoRESUMEN
The Na/H exchanger regulatory factors, NHERF1 and NHERF2, are adapter proteins involved in targeting and assembly of protein complexes. The parathyroid hormone receptor (PTHR) interacts with both NHERF1 and NHERF2. The NHERF proteins toggle PTHR signaling from predominantly activation of adenylyl cyclase in the absence of NHERF to principally stimulation of phospholipase C when the NHERF proteins are expressed. We hypothesized that this signaling switch occurs at the level of the G protein. We measured G protein activation by [(35)S]GTPgammaS binding and G(alpha) subtype-specific immunoprecipitation using three different cellular models of PTHR signaling. These studies revealed that PTHR interactions with NHERF1 enhance receptor-mediated stimulation of G(alpha)(q) but have no effect on stimulation of G(alpha)(i) or G(alpha)(s). In contrast, PTHR associations with NHERF2 enhance receptor-mediated stimulation of both G(alpha)(q) and G(alpha)(i) but decrease stimulation of G(alpha)(s). Consistent with these functional data, NHERF2 formed cellular complexes with both G(alpha)(q) and G(alpha)(i), whereas NHERF1 was found to interact only with G(alpha)(q). These findings demonstrate that NHERF interactions regulate PTHR signaling at the level of G proteins and that NHERF1 and NHERF2 exhibit isotype-specific effects on G protein activation.
Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Fosfoproteínas/metabolismo , Transducción de Señal/fisiología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Humanos , Fosfoproteínas/genética , Receptor de Hormona Paratiroídea Tipo 1/genética , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Intercambiadores de Sodio-Hidrógeno/genéticaRESUMEN
Advanced prostate cancer preferential metastasis to bone is associated with osteomimicry. MINDIN is a secreted matrix protein upregulated in prostate tumors that overexpresses bone-related genes during prostate cancer progression. Na+/H+ exchanger regulatory factor (NHERF-1) is a scaffold protein that has been involved both in tumor regulation and osteogenesis. We hypothesize that NHERF-1 modulation is a mechanism used by MINDIN to promote prostate cancer progression. We analyzed the expression of NHERF-1 and MINDIN in human prostate samples and in a premetastatic prostate cancer mouse model, based on the implantation of prostate adenocarcinoma TRAMP-C1 (transgenic adenocarcinoma of the mouse prostate) cells in immunocompetent C57BL/6 mice. The relationship between NHERF-1 and MINDIN and their effects on cell proliferation, migration, survival and osteomimicry were evaluated. Upregulation of MINDIN and downregulation of NHERF-1 expression were observed both in human prostate cancer samples and in the TRAMP-C1 model. MINDIN silencing restored NHERF-1 expression to control levels in the mouse model. Stimulation with MINDIN reduced NHERF-1 expression and triggered its mobilization from the plasma membrane to the cytoplasm in TRAMP-C1 cells. MINDIN-dependent downregulation of NHERF-1 promoted tumor cell migration and proliferation without affecting osteomimicry and adhesion. We propose that MINDIN downregulates NHERF-1 expression leading to promotion of processes involved in prostate cancer progression.
RESUMEN
Advanced prostate cancers that progress to tumor metastases are often considered incurable or difficult to treat. The etiology of prostate cancers is multi-factorial. Among other factors, de-regulation of calcium signals in prostate tumor cells mediates several pathological dysfunctions associated with tumor progression. Calcium plays a relevant role on tumor cell death, proliferation, motility-invasion and tumor metastasis. Calcium controls molecular factors and signaling pathways involved in the development of prostate cancer and its progression. Such factors and pathways include calcium channels and calcium-binding proteins. Nevertheless, the involvement of calcium signaling on prostate cancer predisposition for bone tropism has been relatively unexplored. In this regard, a diversity of mechanisms triggers transient accumulation of intracellular calcium in prostate cancer cells, potentially favoring bone metastases development. New therapies for the treatment of prostate cancer include compounds characterized by potent and specific actions that target calcium channels/transporters or pumps. These novel drugs for prostate cancer treatment encompass calcium-ATPase inhibitors, voltage-gated calcium channel inhibitors, transient receptor potential (TRP) channel regulators or Orai inhibitors. This review details the latest results that have evaluated the relationship between calcium signaling and progression of prostate cancer, as well as potential therapies aiming to modulate calcium signaling in prostate tumor progression.
RESUMEN
Bone metastases are common in advanced prostate cancer patients, but mechanisms by which specific pro-metastatic skeletal niches are formed before tumor cell homing are unclear. We aimed to analyze the effects of proteins secreted by primary prostate tumors on the bone microenvironment before the settlement and propagation of metastases. Here, using an in vivo pre-metastatic prostate cancer model based on the implantation of prostate adenocarcinoma TRAMP-C1 cells in immunocompetent C57BL/6 mice, we identify MINDIN as a prostate tumor secreted protein that induces bone microstructural and bone remodeling gene expression changes before tumor cell homing. Associated with these changes, increased tumor cell adhesion to the endosteum ex vivo and to osteoblasts in vitro was observed. Furthermore, MINDIN promoted osteoblast proliferation and mineralization and monocyte expression of osteoclast markers. ß-catenin signaling pathway revealed to mediate MINDIN actions on osteoblast gene expression but failed to affect MINDIN-induced adhesion to prostate tumor cells or monocyte differentiation to osteoclasts. Our study evidences that MINDIN secretion by primary prostate tumors creates a favorable bone environment for tumor cell homing before metastatic spread.
Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/metabolismo , beta Catenina/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , TransfecciónRESUMEN
Musculoskeletal disorders represent an elevated socioeconomic burden for developed aging societies. Osteoporosis (OP) has been treated with antiresorptive therapies or with teriparatide that was until recently the only anabolic therapy. However, approval of osteoporosis treatment in postmenopausal women with abaloparatide, which is an analog of parathyroid hormone-related peptide (PTHrP), has created a new alternative for OP management. The success of this new treatment is related to differential mechanisms of activation of PTH receptor type 1 (PTH1R) by abaloparatide and PTH. Here, we address the distinguishing mechanisms of PTH1R activation; the effects of PTH1R stimulation in osteoblast, osteocytes, and chondrocytes; the differences between PTH and abaloparatide actions on PTH1R; potential safety concerns; and future perspectives about abaloparatide use in other musculoskeletal disorders.
Asunto(s)
Proteína Relacionada con la Hormona Paratiroidea/uso terapéutico , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteocitos/efectos de los fármacos , Osteocitos/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Osteoporosis Posmenopáusica/tratamiento farmacológico , Osteoporosis Posmenopáusica/metabolismo , Teriparatido/uso terapéuticoRESUMEN
Macrophages occupy a prominent position during immune responses. They are considered the final effectors of any given immune response since they can be activated by a wide range of surface ligands and cytokines to acquire a continuum of functional states. Macrophages are involved in tissue homeostasis and in the promotion or resolution of inflammatory responses, causing tissue damage or helping in tissue repair. Knowledge in macrophage polarization has significantly increased in the last decade. Biomarkers, functions, and metabolic states associated with macrophage polarization status have been defined both in murine and human models. Moreover, a large body of evidence demonstrated that macrophage status is a dynamic process that can be modified. Macrophages orchestrate virtually all major diseases-sepsis, infection, chronic inflammatory diseases (rheumatoid arthritis), neurodegenerative disease, and cancer-and thus they represent attractive therapeutic targets. In fact, the possibility to "reprogram" macrophage status is considered as a promising strategy for designing novel therapies. Here, we will review the role of different tissue macrophage populations in the instauration and progression of inflammatory and non-inflammatory pathologies, as exemplified by rheumatoid arthritis, osteoporosis, glioblastoma, and tumor metastasis. We will analyze: 1) the potential as therapeutic targets of recently described macrophage populations, such as osteomacs, reported to play an important role in bone formation and homeostasis or metastasis-associated macrophages (MAMs), key players in the generation of premetastatic niche; 2) the current and potential future approaches to target monocytes/macrophages and their inflammation-causing products in rheumatoid arthritis; and 3) the development of novel intervention strategies using oncolytic viruses, immunomodulatory agents, and checkpoint inhibitors aiming to boost M1-associated anti-tumor immunity. In this review, we will focus on the potential of macrophages as therapeutic targets and discuss their involvement in state-of-the-art strategies to modulate prevalent pathologies of aging societies.
RESUMEN
Parathyroid hormone-related protein (PTHrP) (107-139), in contrast to the N-terminal fragment PTHrP (1-36), has been shown to interact with the vascular endothelial growth factor (VEGF) system to modulate human osteoblast differentiation. In this study, we evaluated whether this interaction might affect human osteoblastic cell survival. Pre-incubation with PTHrP (107-139) for 1-24 h dose-dependently (0.1-100 nM) inhibited dexamethasone- or etoposide-induced cell death in human osteoblastic MG-63 cells and human osteoblast-like cells from trabecular bone. This effect, but not that elicited by PTHrP (1-36), was abolished by the VEGF receptor (VEGFR)-2 inhibitors SU5614 and SU1498 or VEGFR-2 siRNA transfection in these cells. PTHrP (107-139), but not PTHrP (1-36), at 100 nM, rapidly (within 2 min) increased VEGFR-2 tyrosine-phosphorylation in MG-63 cells; an effect unaffected by several inhibitors of metalloproteinases, neutralizing VEGF(165) or VEGFR-2 antibodies, or the VEGF binding inhibitor CBO-PP1. The latter two antagonists also failed to affect (125)I-[Tyr(116)] PTHrP (107-115) binding to these cells. Consistent with its effect on VEGFR-2 activation, PTHrP (107-139) rapidly induced extracellular signal-regulated kinase (ERK) 1/2 and Akt activaton, and both ERK and phosphatidylinsositol-3 kinase (PI3K) inhibitors abolished its pro-survival effect in human osteoblastic cells. In addition, SU5614 and the latter two types of inhibitors abrogated Runx2 activation by this peptide in MG-63 cells. Transfection with a dominant-negative Runx2 construct abolished the pro-survival effect of PTHrP (107-139), associated with a decrease in Bcl-2/Bax protein ratio. Our findings demonstrate that PTHrP (107-139) interacts with VEGFR-2 to promote human osteoblastic cell survival by a mechanism involving Runx2 activation.
Asunto(s)
Osteoblastos/citología , Osteoblastos/enzimología , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Fragmentos de Péptidos/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Dexametasona/farmacología , Activación Enzimática/efectos de los fármacos , Etopósido/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Osteoblastos/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacologíaRESUMEN
Diabetes mellitus (DM) and aging are associated with bone fragility and increased fracture risk. Both (1-37) N- and (107-111) C-terminal parathyroid hormone-related protein (PTHrP) exhibit osteogenic properties. We here aimed to evaluate and compare the efficacy of either PTHrP (1-37) or PTHrP (107-111) loaded into gelatin-glutaraldehyde-coated hydroxyapatite (HA-Gel) foams to improve bone repair of a transcortical tibial defect in aging rats with or without DM, induced by streptozotocin injection at birth. Diabetic old rats showed bone structural deterioration compared to their age-matched controls. Histological and µ-computerized tomography studies showed incomplete bone repair at 4 weeks after implantation of unloaded Ha-Gel foams in the transcortical tibial defects, mainly in old rats with DM. However, enhanced defect healing, as shown by an increase of bone volume/tissue volume and trabecular and cortical thickness and decreased trabecular separation, occurred in the presence of either PTHrP peptide in the implants in old rats with or without DM. This was accompanied by newly formed bone tissue around the osteointegrated HA-Gel implant and increased gene expression of osteocalcin and vascular endothelial growth factor (bone formation and angiogenic markers, respectively), and decreased expression of Sost gene, a negative regulator of bone formation, in the healing bone area. Our findings suggest that local delivery of PTHrP (1-37) or PTHrP (107-111) from a degradable implant is an attractive strategy to improve bone regeneration in aged and diabetic subjects. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2060-2070, 2016.