Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Part Fibre Toxicol ; 19(1): 40, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35698146

RESUMEN

BACKGROUND: It has been shown that copper oxide nanoparticles (CuO NPs) induce pulmonary toxicity after acute or sub-acute inhalation exposures. However, little is known about the biodistribution and elimination kinetics of inhaled CuO NPs from the respiratory tract. The purposes of this study were to observe the kinetics of pulmonary inflammation during and after CuO NP sub-acute inhalation exposure and to investigate copper (Cu) biodistribution and clearance rate from the exposure site and homeostasis of selected trace elements in secondary organs of BALB/c mice. RESULTS: Sub-acute inhalation exposure to CuO NPs led to pulmonary inflammation represented by increases in lactate dehydrogenase, total cell counts, neutrophils, macrophages, inflammatory cytokines, iron levels in bronchoalveolar lavage (BAL) fluid, and lung weight changes. Dosimetry analysis in lung tissues and BAL fluid showed Cu concentration increased steadily during exposure and gradually declined after exposure. Cu elimination from the lung showed first-order kinetics with a half-life of 6.5 days. Total Cu levels were significantly increased in whole blood and heart indicating that inhaled Cu could be translocated into the bloodstream and heart tissue, and potentially have adverse effects on the kidneys and spleen as there were significant changes in the weights of these organs; increase in the kidneys and decrease in the spleen. Furthermore, concentrations of selenium in kidneys and iron in spleen were decreased, pointing to disruption of trace element homeostasis. CONCLUSIONS: Sub-acute inhalation exposure of CuO NPs induced pulmonary inflammation, which was correlated to Cu concentrations in the lungs and started to resolve once exposure ended. Dosimetry analysis showed that Cu in the lungs was translocated into the bloodstream and heart tissue. Secondary organs affected by CuO NPs exposure were kidneys and spleen as they showed the disruption of trace element homeostasis and organ weight changes.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neumonía , Oligoelementos , Animales , Cobre/toxicidad , Modelos Animales de Enfermedad , Exposición por Inhalación/efectos adversos , Hierro , Nanopartículas del Metal/toxicidad , Ratones , Ratones Endogámicos BALB C , Nanopartículas/toxicidad , Óxidos , Distribución Tisular
2.
Gynecol Oncol ; 155(2): 349-358, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31477281

RESUMEN

OBJECTIVE: Platinum compounds have been widely used as a primary treatment for many types of cancer. However, resistance is the major cause of therapeutic failure for patients with metastatic or recurrent disease, thus highlighting the need to identify novel factors driving resistance to Platinum compounds. Metadherin (MTDH, also known as AEG-1 and LYRIC), located in a frequently amplified region of chromosome 8, has been consistently associated with resistance to chemotherapeutic agents, though the precise mechanisms remain incompletely defined. METHODS: The mRNA of FANCD2 and FANCI was pulled down by RNA-binding protein immunoprecipitation. Pristimerin-loaded nanoparticles were prepared using the nanoprecipitation method. Immunocompromised mice bearing patient-derived xenograft tumors were treated with pristimerin-loaded nanoparticles, cisplatin and a combination of the two. RESULTS: MTDH, through its recently discovered role as an RNA binding protein, regulates expression of FANCD2 and FANCI, two components of the Fanconi anemia complementation group (FA) that play critical roles in interstrand crosslink damage induced by platinum compounds. Pristimerin, a quinonemethide triterpenoid extract from members of the Celastraceae family used to treat inflammation in traditional Chinese medicine, significantly decreased MTDH, FANCD2 and FANCI levels in cancer cells, thereby restoring sensitivity to platinum-based chemotherapy. Using a patient-derived xenograft model of endometrial cancer, we discovered that treatment with pristimerin in a novel nanoparticle formulation markedly inhibited tumor growth when combined with cisplatin. CONCLUSIONS: MTDH is involved in post-transcriptional regulation of FANCD2 and FANCI. Pristimerin can increase sensitivity to platinum-based agents in tumors with MTDH overexpression by inhibiting the FA pathway.


Asunto(s)
Antineoplásicos/farmacología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/antagonistas & inhibidores , Proteínas del Grupo de Complementación de la Anemia de Fanconi/antagonistas & inhibidores , Proteínas de la Membrana/efectos de los fármacos , Triterpenos/farmacología , Animales , Cisplatino/farmacología , Cistadenocarcinoma Seroso/tratamiento farmacológico , Regulación hacia Abajo , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Masculino , Ratones Noqueados , Nanopartículas , Triterpenos Pentacíclicos , Proteínas de Unión al ARN , Neoplasias Uterinas/tratamiento farmacológico
3.
ACS Nano ; 17(15): 14586-14603, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37463491

RESUMEN

It has been shown that inhalation exposure to copper oxide nanoparticles (CuO NPs) results in pulmonary inflammation. However, immunomodulatory consequences after CuO NP inhalation exposure have been less explored. We tested the effect of CuO NP aerosols on immune responses in healthy, house dust mite (HDM) asthmatic, or allergen immunotherapy (AIT)-treated asthmatic mice (BALB/c, females). The AIT consisted of a vaccine comprising HDM allergens and CpG-loaded nanoparticles (CpG NPs). AIT treatment involved mice being immunized (via subcutaneous (sc) injection; 2 doses) while concomitantly being exposed to CuO NP aerosols (over a 2 week period), starting on the day of the first vaccination. Mice were then sensitized twice by sc injection and subsequently challenged with HDM extract 10 times by intranasal instillation. The asthmatic model followed the same timeline except that no immunizations were administered. All mice were necropsied 24 h after the end of the HDM challenge. CuO NP-exposed healthy mice showed a significant decrease in TH1 and TH2 cells, and an elevation in T-bet+ Treg cells, even 40 days after the last exposure to CuO NPs. Similarly, the CuO NP-exposed HDM asthma model demonstrated decreased TH2 responses and increased T-bet+ Treg cells. Conversely, CuO NP inhalation exposure to AIT-treated asthmatic mice resulted in an increase in TH2 cells. In conclusion, immunomodulatory effects of inhalation exposure to CuO NPs are dependent on immune conditions prior to exposure.


Asunto(s)
Asma , Nanopartículas , Femenino , Ratones , Animales , Cobre , Exposición por Inhalación , Asma/inducido químicamente , Asma/terapia , Pyroglyphidae , Inmunidad , Óxidos
4.
Nanoscale ; 14(48): 17821-17840, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36472072

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has recently shown unprecedented clinical efficacy for cancer treatment, particularly of hematological malignancies. However, the complex manufacturing processes that involve ex vivo genetic modification of autologous T cells limits its therapeutic application. CAR T cells generated in vivo provide a valid alternative immunotherapy, "off-the-shelf", for cancer treatment. This approach requires carriers for the delivery of CAR-encoding constructs, which are plasmid DNA or messenger RNA, to T cells for CAR expression to help eradicate the tumor. As such, there are a growing number of studies reporting gene delivery systems for in vivo CAR T cell therapy based on viral vectors and polymeric nanoparticles. Hyaluronic acid (HA) is a natural biopolymer that can serve for gene delivery, because of its inherent properties of cell recognition and internalization, as well as its biodegradability, biocompatibility, and presence of functional groups for the chemical conjugation of targeting ligands. In this review, the potential of HA in the delivery of CAR constructs is discussed on the basis of previous experience of HA-based nanoparticles for gene therapy. Furthermore, current studies on CAR carriers for in vivo-generated CAR T cells are included, giving an idea of a rational design of HA-based systems for the more efficient delivery of CAR to circulating T cells.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T , Ácido Hialurónico , Reprogramación Celular , Inmunoterapia , Neoplasias/tratamiento farmacológico
5.
NanoImpact ; 182020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32968700

RESUMEN

Characterizations and in vitro toxicity screening were performed on metal oxide engineered nanomaterials (ENMs) independently comprising ZnO, CuO, CeO2, Fe2O3, WO3, V2O5, TiO2, Al2O3 and MgO. Nanomaterials that exhibited the highest toxicity responses in the in vitro screening assays (ZnO, CuO, and V2O5) and the lesser explored material WO3 were tested for acute pulmonary toxicity in vivo. Female and male mice (C57Bl/6J) were exposed to aerosolized metal oxide ENMs in a nose-only exposure system and toxicity outcomes (biomarkers of cytotoxicity, immunotoxicity, inflammation, and lung histopathology) at 4 and 24 h after the start of exposure were assessed. The studies were performed as part of the NIEHS Nanomaterials Health Implications Research consortium with the purpose of investigating the effects of ENMs on various biological systems. ENMs were supplied by the Engineered Nanomaterials Resource and Coordination Core. Among the ENMs studied, the highest toxicity was observed for CuO and ZnO NPs in both in vitro and in vivo acute models. Compared to sham-exposed controls, there was a significant increase in bronchoalveolar lavage neutrophils and proinflammatory cytokines and a loss of macrophage viability at both 4 h and 24 h for ZnO and CuO but not seen for V2O5 or WO3. These effects were observed in both female and male mice. The cell viability performed after in vitro exposure to ENMs and assessment of lung inflammation after acute inhalation exposure in vivo were shown to be sensitive endpoints to predict ENM acute toxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA