Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(4): 998-1013.e20, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388456

RESUMEN

Treatment of cancer has been revolutionized by immune checkpoint blockade therapies. Despite the high rate of response in advanced melanoma, the majority of patients succumb to disease. To identify factors associated with success or failure of checkpoint therapy, we profiled transcriptomes of 16,291 individual immune cells from 48 tumor samples of melanoma patients treated with checkpoint inhibitors. Two distinct states of CD8+ T cells were defined by clustering and associated with patient tumor regression or progression. A single transcription factor, TCF7, was visualized within CD8+ T cells in fixed tumor samples and predicted positive clinical outcome in an independent cohort of checkpoint-treated patients. We delineated the epigenetic landscape and clonality of these T cell states and demonstrated enhanced antitumor immunity by targeting novel combinations of factors in exhausted cells. Our study of immune cell transcriptomes from tumors demonstrates a strategy for identifying predictors, mechanisms, and targets for enhancing checkpoint immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunoterapia/métodos , Melanoma/inmunología , Transcriptoma , Animales , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Monoclonales Humanizados/farmacología , Antígenos CD/inmunología , Antineoplásicos Inmunológicos/inmunología , Antineoplásicos Inmunológicos/farmacología , Apirasa/antagonistas & inhibidores , Apirasa/inmunología , Línea Celular Tumoral , Humanos , Antígenos Comunes de Leucocito/antagonistas & inhibidores , Antígenos Comunes de Leucocito/inmunología , Melanoma/terapia , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Factor 1 de Transcripción de Linfocitos T/metabolismo
3.
Nature ; 615(7950): 158-167, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36634707

RESUMEN

Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking1,2. Here we identify the innate immune kinase TANK-binding kinase 1 (TBK1)3 as a candidate immune-evasion gene in a pooled genetic screen4. Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for TBK1 as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK-STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy.


Asunto(s)
Resistencia a Antineoplásicos , Evasión Inmune , Inmunoterapia , Proteínas Serina-Treonina Quinasas , Humanos , Evasión Inmune/genética , Evasión Inmune/inmunología , Inmunoterapia/métodos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Organoides , Factores de Necrosis Tumoral/inmunología , Interferón gamma/inmunología , Esferoides Celulares , Caspasas , Quinasas Janus , Factores de Transcripción STAT
4.
Semin Immunol ; 59: 101606, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35691882

RESUMEN

Inflammation is a multifactorial process and various biological mechanisms and pathways participate in its development. The presence of inflammation is involved in pathogenesis of different diseases such as diabetes mellitus, cardiovascular diseases and even, cancer. Non-coding RNAs (ncRNAs) comprise large part of transcribed genome and their critical function in physiological and pathological conditions has been confirmed. The present review focuses on miRNAs, lncRNAs and circRNAs as ncRNAs and their potential functions in inflammation regulation and resolution. Pro-inflammatory and anti-inflammatory factors are regulated by miRNAs via binding to 3'-UTR or indirectly via affecting other pathways such as SIRT1 and NF-κB. LncRNAs display a similar function and they can also affect miRNAs via sponging in regulating levels of cytokines. CircRNAs mainly affect miRNAs and reduce their expression in regulating cytokine levels. Notably, exosomal ncRNAs have shown capacity in inflammation resolution. In addition to pre-clinical studies, clinical trials have examined role of ncRNAs in inflammation-mediated disease pathogenesis and cytokine regulation. The therapeutic targeting of ncRNAs using drugs and nucleic acids have been analyzed to reduce inflammation in disease therapy. Therefore, ncRNAs can serve as diagnostic, prognostic and therapeutic targets in inflammation-related diseases in pre-clinical and clinical backgrounds.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , ARN Circular/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Inflamación/genética , Citocinas
5.
Cancer Metastasis Rev ; 43(1): 457-479, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38227149

RESUMEN

Epithelial-mesenchymal transition (EMT) is a complicated molecular process that governs cellular shape and function changes throughout tissue development and embryogenesis. In addition, EMT contributes to the development and spread of tumors. Expanding and degrading the surrounding microenvironment, cells undergoing EMT move away from the main location. On the basis of the expression of fibroblast-specific protein-1 (FSP1), fibroblast growth factor (FGF), collagen, and smooth muscle actin (-SMA), the mesenchymal phenotype exhibited in fibroblasts is crucial for promoting EMT. While EMT is not entirely reliant on its regulators like ZEB1/2, Twist, and Snail proteins, investigation of upstream signaling (like EGF, TGF-ß, Wnt) is required to get a more thorough understanding of tumor EMT. Throughout numerous cancers, connections between tumor epithelial and fibroblast cells that influence tumor growth have been found. The significance of cellular crosstalk stems from the fact that these events affect therapeutic response and disease prognosis. This study examines how classical EMT signals emanating from various cancer cells interfere to tumor metastasis, treatment resistance, and tumor recurrence.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias , Humanos , Transición Epitelial-Mesenquimal/fisiología , Neoplasias/metabolismo , Transducción de Señal , Fenotipo , Resistencia a Medicamentos , Línea Celular Tumoral , Microambiente Tumoral
6.
Cell Mol Life Sci ; 81(1): 214, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733529

RESUMEN

The non-coding RNAs comprise a large part of human genome lack of capacity in encoding functional proteins. Among various members of non-coding RNAs, the circular RNAs (circRNAs) have been of importance in the pathogenesis of human diseases, especially cancer. The circRNAs have a unique closed loop structure and due to their stability, they are potential diagnostic and prognostic factors in cancer. The increasing evidences have highlighted the role of circRNAs in the modulation of proliferation and metastasis of cancer cells. On the other hand, metastasis has been responsible for up to 90% of cancer-related deaths in patients, requiring more investigation regarding the underlying mechanisms modulating this mechanism. EMT enhances metastasis and invasion of tumor cells, and can trigger resistance to therapy. The cells demonstrate dynamic changes during EMT including transformation from epithelial phenotype into mesenchymal phenotype and increase in N-cadherin and vimentin levels. The process of EMT is reversible and its reprogramming can disrupt the progression of tumor cells. The aim of current review is to understanding the interaction of circRNAs and EMT in human cancers and such interaction is beyond the regulation of cancer metastasis and can affect the response of tumor cells to chemotherapy and radiotherapy. The onco-suppressor circRNAs inhibit EMT, while the tumor-promoting circRNAs mediate EMT for acceleration of carcinogenesis. Moreover, the EMT-inducing transcription factors can be controlled by circRNAs in different human tumors.


Asunto(s)
Carcinogénesis , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Metástasis de la Neoplasia , Neoplasias , ARN Circular , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Transición Epitelial-Mesenquimal/genética , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Resistencia a Antineoplásicos/genética , Plasticidad de la Célula/genética , Animales , Regulación Neoplásica de la Expresión Génica
7.
Cell Mol Life Sci ; 81(1): 106, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38418707

RESUMEN

Advances in cancer immunotherapy over the last decade have led to the development of several agents that affect immune checkpoints. Inhibitory receptors expressed on T cells that negatively regulate the immune response include cytotoxic T­lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD1), which have been studied more than similar receptors. Inhibition of these proteins and other immune checkpoints can stimulate the immune system to attack cancer cells, and prevent the tumor from escaping the immune response. However, the administration of anti-PD1 and anti-CTLA4 antibodies has been associated with adverse inflammatory responses similar to autoimmune diseases. The current review discussed the role of the NF-κB pathway as a tumor promoter, and how it can govern inflammatory responses and affect various immune checkpoints. More precise knowledge about the communication between immune checkpoints and NF-κB pathways could increase the effectiveness of immunotherapy and reduce the adverse effects of checkpoint inhibitor therapy.


Asunto(s)
FN-kappa B , Neoplasias , Humanos , Linfocitos T , Inmunoterapia , Antígeno CTLA-4
8.
Environ Res ; 240(Pt 2): 117443, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37863168

RESUMEN

A high number of cancer patients around the world rely on gemcitabine (GEM) for chemotherapy. During local metastasis of cancers, surgery is beneficial for therapy, but dissemination in distant organs leads to using chemotherapy alone or in combination with surgery to prevent cancer recurrence. Therapy failure can be observed as a result of GEM resistance, threatening life of pancreatic cancer (PC) patients. The mortality and morbidity of PC in contrast to other tumors are increasing. GEM chemotherapy is widely utilized for PC suppression, but resistance has encountered its therapeutic impacts. The purpose of current review is to bring a broad concept about role of biological mechanisms and pathways in the development of GEM resistance in PC and then, therapeutic strategies based on using drugs or nanostructures for overcoming chemoresistance. Dysregulation of the epigenetic factors especially non-coding RNA transcripts can cause development of GEM resistance in PC and miRNA transfection or using genetic tools such as siRNA for modulating expression level of these factors for changing GEM resistance are suggested. The overexpression of anti-apoptotic proteins and survival genes can contribute to GEM resistance in PC. Moreover, supportive autophagy inhibits apoptosis and stimulates GEM resistance in PC cells. Increase in metabolism, glycolysis induction and epithelial-mesenchymal transition (EMT) stimulation are considered as other factors participating in GEM resistance in PC. Drugs can suppress tumorigenesis in PC and inhibit survival factors and pathways in increasing GEM sensitivity in PC. More importantly, nanoparticles can increase pharmacokinetic profile of GEM and promote its blood circulation and accumulation in cancer site. Nanoparticles mediate delivery of GEM with genes and drugs to suppress tumorigenesis in PC and increase drug sensitivity. The basic research displays significant connection among dysregulated pathways and GEM resistance, but the lack of clinical application is a drawback that can be responded in future.


Asunto(s)
Gemcitabina , Neoplasias Pancreáticas , Humanos , Preparaciones Farmacéuticas , Recurrencia Local de Neoplasia , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Carcinogénesis , Transformación Celular Neoplásica , Neoplasias Pancreáticas
9.
Cell Mol Life Sci ; 80(4): 104, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947256

RESUMEN

Targeted therapy is a new cancer treatment approach, involving drugs that particularly target specific proteins in cancer cells, such as receptor tyrosine kinases (RTKs) which are involved in promoting growth and proliferation, Therefore inhibiting these proteins could impede cancer progression. An understanding of RTKs and the relevant signaling cascades, has enabled the development of many targeted drug therapies employing RTK inhibitors (RTKIs) some of which have entered clinical application. Here we discuss RTK structures, activation mechanisms and functions. Moreover, we cover the potential effects of combination drug therapy (including chemotherapy or immunotherapy agents with one RTKI or multiple RTKIs) especially for drug resistant cancers.


Asunto(s)
Neoplasias , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas Receptoras/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Transducción de Señal
10.
Pharmacol Res ; 187: 106553, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400343

RESUMEN

Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
11.
Environ Res ; 228: 115914, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37062475

RESUMEN

Despite numerous prevention methodologies and treatment options, hepatocellular carcinoma (HCC) still remains as the third leading life-threatening cancer. It is thus pertinent to develop new treatment modality to fight this devastating carcinoma. Ample recent studies have shown the anti-inflammatory and antitumor roles of the endocannabinoid system in various forms of cancers. Preclinical studies have also confirmed that cannabinoid therapy can be an optimal regimen for cancer treatments. The endocannabinoid system is involved in many cancer-related processes, including induction of endoplasmic reticulum (ER) stress-dependent apoptosis, autophagy, PITRK and ERK signaling pathways, cell invasion, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) phenotypes. Moreover, changes in signaling transduction of the endocannabinoid system can be a potential diagnostic and prognostic biomarker for HCC. Due to its pivotal role in lipid metabolism, the endocannabinoid system affects metabolic reprogramming as well as lipid content of exosomes. In addition, due to the importance of non-coding RNAs (ncRNAs), several studies have examined the relationship between microRNAs and the endocannabinoid system in HCC. However, HCC is a pathological condition with high heterogeneity, and therefore using the endocannabinoid system for treatment has faced many controversies. While some studies favored a role of the endocannabinoid system in carcinogenesis and tumor induction, others exhibited the anticancer potential of endocannabinoids in HCC. In this review, specific studies delineating the relationship between endocannabinoids and HCC are examined. Based on collected findings, detailed studies of the molecular mechanism of endocannabinoids as well as preclinical studies for investigating therapeutic or carcinogenic impacts in HCC cancer are strongly suggested.


Asunto(s)
Cannabinoides , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Endocannabinoides/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , MicroARNs/uso terapéutico , Cannabinoides/uso terapéutico , Línea Celular Tumoral
12.
Environ Res ; 239(Pt 2): 117263, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37797672

RESUMEN

RNA interference (RNAi) is a unique treatment approach used to decrease a disease's excessive gene expression, including cancer. SiRNAs may find and destroy homologous mRNA sequences within the cell thanks to RNAi processes. However, difficulties such poor cellular uptake, off-target effects, and susceptibility to destruction by serum nucleases in the bloodstream restrict the therapeutic potential of siRNAs. Since some years ago, siRNA-based therapies have been in the process of being translated into the clinic. Therefore, the primary emphasis of this work is on sophisticated nanocarriers that aid in the transport of siRNA payloads, their administration in combination with anticancer medications, and their use in the treatment of cancer. The research looks into molecular manifestations, difficulties with siRNA transport, the design and development of siRNA-based delivery methods, and the benefits and drawbacks of various nanocarriers. The trapping of siRNA in endosomes is a challenge for the majority of delivery methods, which affects the therapeutic effectiveness. Numerous techniques for siRNA release, including as pH-responsive release, membrane fusion, the proton sponge effect, and photochemical disruption, have been studied to overcome this problem. The present state of siRNA treatments in clinical trials is also looked at in order to give a thorough and systematic evaluation of siRNA-based medicines for efficient cancer therapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , Sistema de Administración de Fármacos con Nanopartículas , Interferencia de ARN , Neoplasias/genética , Neoplasias/terapia , Terapia Genética , Nanotecnología/métodos , Nanopartículas/química
13.
Environ Res ; 233: 116458, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37348629

RESUMEN

Colorectal cancer (CRC) ranks as the third most aggressive tumor globally, and it can be categorized into two forms: colitis-mediated CRC and sporadic CRC. The therapeutic approaches for CRC encompass surgical intervention, chemotherapy, and radiotherapy. However, even with the implementation of these techniques, the 5-year survival rate for metastatic CRC remains at a mere 12-14%. In the realm of CRC treatment, gene therapy has emerged as a novel therapeutic approach. Among the crucial molecular pathways that govern tumorigenesis, STAT3 plays a significant role. This pathway is subject to regulation by cytokines and growth factors. Once translocated into the nucleus, STAT3 influences the expression levels of factors associated with cell proliferation and metastasis. Literature suggests that the upregulation of STAT3 expression is observed as CRC cells progress towards metastatic stages. Consequently, elevated STAT3 levels serve as a significant determinant of poor prognosis and can be utilized as a diagnostic factor for cancer patients. The biological and malignant characteristics of CRC cells contribute to low survival rates in patients, as the upregulation of STAT3 prevents apoptosis and promotes pro-survival autophagy, thereby accelerating tumorigenesis. Furthermore, STAT3 plays a role in facilitating the proliferation of CRC cells through the stimulation of glycolysis and promoting metastasis via the induction of epithelial-mesenchymal transition (EMT). Notably, an intriguing observation is that the upregulation of STAT3 can mediate resistance to 5-fluorouracil, oxaliplatin, and other anti-cancer drugs. Moreover, the radio-sensitivity of CRC diminishes with increased STAT3 expression. Compounds such as curcumin, epigallocatechin gallate, and other anti-tumor agents exhibit the ability to suppress STAT3 and its associated pathways, thereby impeding tumorigenesis in CRC. Furthermore, it is worth noting that nanostructures have demonstrated anti-proliferative and anti-metastatic properties in CRC.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Transformación Celular Neoplásica , Apoptosis , Citocinas/metabolismo , Proliferación Celular , Línea Celular Tumoral , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
14.
Environ Res ; 238(Pt 1): 117087, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716390

RESUMEN

Hydrogels represent intricate three-dimensional polymeric structures, renowned for their compatibility with living systems and their ability to naturally degrade. These networks stand as promising and viable foundations for a range of biomedical uses. The practical feasibility of employing hydrogels in clinical trials has been well-demonstrated. Among the prevalent biomedical uses of hydrogels, a significant application arises in the context of wound healing. This intricate progression involves distinct phases of inflammation, proliferation, and remodeling, often triggered by trauma, skin injuries, and various diseases. Metabolic conditions like diabetes have the potential to give rise to persistent wounds, leading to delayed healing processes. This current review consolidates a collection of experiments focused on the utilization of hydrogels to expedite the recovery of wounds. Hydrogels have the capacity to improve the inflammatory conditions at the wound site, and they achieve this by diminishing levels of reactive oxygen species (ROS), thereby exhibiting antioxidant effects. Hydrogels have the potential to enhance the growth of fibroblasts and keratinocytes at the wound site. They also possess the capability to inhibit both Gram-positive and Gram-negative bacteria, effectively managing wounds infected by drug-resistant bacteria. Hydrogels can trigger angiogenesis and neovascularization processes, while also promoting the M2 polarization of macrophages, which in turn mitigates inflammation at the wound site. Intelligent and versatile hydrogels, encompassing features such as pH sensitivity, reactivity to reactive oxygen species (ROS), and responsiveness to light and temperature, have proven advantageous in expediting wound healing. Furthermore, hydrogels synthesized using environmentally friendly methods, characterized by high levels of biocompatibility and biodegradability, hold the potential for enhancing the wound healing process. Hydrogels can facilitate the controlled discharge of bioactive substances. More recently, there has been progress in the creation of conductive hydrogels, which, when subjected to electrical stimulation, contribute to the enhancement of wound healing. Diabetes mellitus, a metabolic disorder, leads to a slowdown in the wound healing process, often resulting in the formation of persistent wounds. Hydrogels have the capability to expedite the healing of diabetic wounds, facilitating the transition from the inflammatory phase to the proliferative stage. The current review sheds light on the biological functionalities of hydrogels, encompassing their role in modulating diverse mechanisms and cell types, including inflammation, oxidative stress, macrophages, and bacteriology. Additionally, this review emphasizes the significance of smart hydrogels with responsiveness to external stimuli, as well as conductive hydrogels for promoting wound healing. Lastly, the discussion delves into the advancement of environmentally friendly hydrogels with high biocompatibility, aimed at accelerating the wound healing process.


Asunto(s)
Diabetes Mellitus , Hidrogeles , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Medicina de Precisión , Bacterias Gramnegativas , Bacterias Grampositivas , Cicatrización de Heridas , Inflamación
15.
Environ Res ; 237(Pt 2): 117027, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659647

RESUMEN

The latest advancements in oncology involves the creation of multifunctional nanostructures. The integration of nanoparticles into the realm of cancer therapy has brought about a transformative shift, revolutionizing the approach to addressing existing challenges and limitations in tumor elimination. This is particularly crucial in combating the emergence of resistance, which has significantly undermined the effectiveness of treatments like chemotherapy and radiotherapy. GO stands as a carbon-derived nanoparticle that is increasingly finding utility across diverse domains, notably in the realm of biomedicine. The utilization of GO nanostructures holds promise in the arena of oncology, enabling precise transportation of drugs and genetic material to targeted sites. GO nanomaterials offer the opportunity to enhance the pharmacokinetic behavior and bioavailability of drugs, with documented instances of these nanocarriers elevating drug accumulation at the tumor location. The GO nanostructures encapsulate genes, shielding them from degradation and facilitating their uptake within cancer cells, thereby promoting efficient gene silencing. The capability of GO to facilitate phototherapy has led to notable advancements in reducing tumor progression. By PDT and PTT combination, GO nanomaterials hold the capacity to diminish tumorigenesis. GO nanomaterials have the potential to trigger both cellular and innate immunity, making them promising contenders for vaccine development. Additionally, types of GO nanoparticles that respond to specific stimuli have been applied in cancer eradication, as well as for the purpose of cancer detection and biomarker diagnosis. Endocytosis serves as the mechanism through which GO nanomaterials are internalized. Given these advantages, the utilization of GO nanomaterials for tumor elimination comes highly recommended.

16.
Cell Mol Life Sci ; 79(11): 572, 2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36308630

RESUMEN

Almost all clinical oncologists agree that the discovery of reliable, accessible, and non-invasive biomarkers is necessary to decrease cancer mortality. It is possible to employ reliable biomarkers to diagnose cancer in the early stages, predict the patient prognosis, follow up the response to treatment, and estimate the risk of disease recurrence with high sensitivity and specificity. Extracellular vesicles (EVs), especially exosomes, have been the focus of translational research to develop such biomarkers over the past decade. The abundance and distribution of exosomes in bodily fluids, including serum, saliva, and urine, as well as their ability to transport various biomolecules (nucleic acids, proteins, and lipids) derived from their parent cells, make exosomes reliable, accessible, and potent biomarkers for diagnosis and follow-up of solid and hematopoietic tumors. In addition, exosomes play a vital role in various cellular processes, including tumor progression, by participating in intercellular communication. Although these advantages underline the high potential of tumor-derived exosomes as diagnostic biomarkers, the lack of standardized effective methods for their isolation, identification, and precise characterization makes their application challenging in clinical settings. We discuss the importance of non-coding RNAs (ncRNAs) in cellular processes, and the role of tumor-derived exosomes containing ncRNAs as potential biomarkers in several types of cancer. In addition, the advantages and challenges of these studies for translation into clinical applications are covered.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/tratamiento farmacológico , ARN no Traducido/genética , ARN no Traducido/metabolismo , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
17.
J Cell Physiol ; 237(10): 3752-3767, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35959643

RESUMEN

Cancer cells must overcome a variety of external and internal stresses to survive and proliferate. These unfavorable conditions include the accumulation of mutations, nutrient deficiency, oxidative stress, and hypoxia. These stresses can cause aggregation of misfolded proteins inside the endoplasmic reticulum. Under these conditions, the cell undergoes endoplasmic reticulum stress (ER-stress), and consequently initiates the unfolded protein response (UPR). Activation of the UPR triggers transcription factors and regulatory factors, including long noncoding RNAs (lncRNAs), which control the gene expression profile to maintain cellular stability and hemostasis. Recent investigations have shown that cancer cells can ensure their survival under adverse conditions by the UPR affecting the expression of lncRNAs. Therefore, understanding the relationship between lncRNA expression and ER stress could open new avenues, and suggest potential therapies to treat various types of cancer.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/genética
18.
J Cell Physiol ; 237(5): 2309-2344, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35437787

RESUMEN

The identification of agents that can reverse drug resistance in cancer chemotherapy, and enhance the overall efficacy is of great interest. Paclitaxel (PTX) belongs to taxane family that exerts an antitumor effect by stabilizing microtubules and inhibiting cell cycle progression. However, PTX resistance often develops in tumors due to the overexpression of drug transporters and tumor-promoting pathways. Noncoding RNAs (ncRNAs) are modulators of many processes in cancer cells, such as apoptosis, migration, differentiation, and angiogenesis. In the present study, we summarize the effects of ncRNAs on PTX chemotherapy. MicroRNAs (miRNAs) can have opposite effects on PTX resistance (stimulation or inhibition) via influencing YES1, SK2, MRP1, and STAT3. Moreover, miRNAs modulate the growth and migration rates of tumor cells in regulating PTX efficacy. PIWI-interacting RNAs, small interfering RNAs, and short-hairpin RNAs are other members of ncRNAs regulating PTX sensitivity of cancer cells. Long noncoding RNAs (LncRNAs) are similar to miRNAs and can modulate PTX resistance/sensitivity by their influence on miRNAs and drug efflux transport. The cytotoxicity of PTX against tumor cells can also be affected by circular RNAs (circRNAs) and limitation is that oncogenic circRNAs have been emphasized and experiments should also focus on onco-suppressor circRNAs.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Resistencia a Medicamentos , Resistencia a Antineoplásicos/genética , Humanos , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , ARN Circular/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética
19.
Pharmacol Res ; 176: 106041, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34952200

RESUMEN

Drug resistance is one of the most critical challenges facing researchers in treating breast cancer. Despite numerous treatments for breast cancer, including conventional chemical drugs, monoclonal antibodies, and immunotherapeutic drugs known as immune checkpoint inhibitors (ICI), many patients resist various approaches. In recent years, the relationship between gene expression profiles and drug resistance phenotypes has attracted much attention. Non-coding RNAs (ncRNAs) are regulatory molecules that have been shown to regulate gene expression and cell transcriptome. Two categories, microRNAs and long non-coding RNAs have been more considered and studied among these ncRNAs. Studying the role of different ncRNAs in chemical drug resistance and ICI resistance together can be beneficial in selecting more effective treatments for breast cancer. Changing the expression and action mechanism of these regulatory molecules on drug resistance phenotypes is the main topic of this review article.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Resistencia a Antineoplásicos/genética , ARN no Traducido , Animales , Femenino , Humanos
20.
Proc Natl Acad Sci U S A ; 116(34): 16971-16980, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31375632

RESUMEN

Immunotherapy using checkpoint-blocking antibodies against PD-1 has produced impressive results in a wide range of cancers. However, the response remains heterogeneous among patients. We used noninvasive immuno-positron emission tomography (PET), using 89Zr-labeled PEGylated single-domain antibody fragments (nanobodies or VHHs), to explore the dynamics and distribution of intratumoral CD8+ T cells and CD11b+ myeloid cells in response to anti-PD-1 treatment in the MC38 colorectal mouse adenocarcinoma model. Responding and nonresponding tumors showed consistent differences in the distribution of CD8+ and CD11b+ cells. Anti-PD-1 treatment mobilized CD8+ T cells from the tumor periphery to a more central location. Only those tumors fully infiltrated by CD8+ T cells went on to complete resolution. All tumors contained CD11b+ myeloid cells from the outset of treatment, with later recruitment of additional CD11b+ cells. As tumors grew, the distribution of intratumoral CD11b+ cells became more heterogeneous. Shrinkage of tumors in responders correlated with an increase in the CD11b+ population in the center of the tumors. The changes in distribution of CD8+ and CD11b+ cells, as assessed by PET, served as biomarkers to gauge the efficacy of anti-PD-1 treatment. Single-cell RNA sequencing of RNA from intratumoral CD45+ cells showed that CD11b+ cells in responders and nonresponders were markedly different. The responders exhibited a dominant population of macrophages with an M1-like signature, while the CD45+ population in the nonresponders displayed an M2-like transcriptional signature. Thus, by using immuno-PET and single-cell RNA sequencing, we show that anti-PD-1 treatment not only affects interactions of CD8+ T cells with the tumor but also impacts the intratumoral myeloid compartment.


Asunto(s)
Adenocarcinoma , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos , Neoplasias Colorrectales , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales , Tomografía de Emisión de Positrones , Receptor de Muerte Celular Programada 1/inmunología , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Adenocarcinoma/terapia , Animales , Antígeno CD11b/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Línea Celular Tumoral , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Femenino , Ratones , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA