Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 27(10): 1696-1710, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29547959

RESUMEN

Glucocerebrosidase gene (GBA) mutations are the most common genetic contributor to Parkinson's disease (PD) and are associated with decreased glucocerebrosidase (GCase) enzymatic activity in PD. PD patients without GBA mutations also exhibit lower levels of GCase activity in the central nervous system suggesting a potential contribution of the enzyme activity in disease pathogenesis, possibly by alteration of lysosomal function. α-synuclein (ASYN), a protein with a central role in PD pathogenesis, has been shown to be secreted partly in association with exosomes. It is possible that a dysfunction of the endocytic pathway through GCase may result in altered exosome release of ASYN. The aim of this study was to examine whether manipulating GCase activity in vivo and in vitro could affect ASYN accumulation and secretion. GCase overexpression in vitro resulted in a significant decrease of exosome secretion. Chronic inhibition of GCase activity in vivo, by administration of the covalent inhibitor conduritol-B epoxide in A53T-synuclein alpha gene Tg mice significantly elevated intracellular oligomeric ASYN species. Importantly, GCase inhibition, induced a profound increase in the number of brain exosomes released, as well as exosome-associated ASYN oligomers. Finally, virus-mediated expression of mutant GBA in the mouse striatum increased ASYN secretion in the same region. Together, these results provide for the first time evidence that a decrease of GCase or overexpression of mutant GCase in a chronic in vivo setting can affect ASYN secretion. Such effects may mediate enhanced propagation of ASYN, driving pathology in GBA-associated PD.


Asunto(s)
Exosomas/genética , Glucosilceramidasa/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Exosomas/metabolismo , Glucosilceramidasa/metabolismo , Humanos , Inositol/administración & dosificación , Inositol/análogos & derivados , Lisosomas/genética , Lisosomas/metabolismo , Ratones , Mutación , Enfermedad de Parkinson/fisiopatología
2.
Neurochem Res ; 39(3): 471-86, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24515454

RESUMEN

Mammalian glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to α-ketoglutarate and ammonia, interconnecting carbon skeleton and nitrogen metabolism. In addition, it functions as an energy switch by its ability to fuel the Krebs cycle depending on the energy status of the cell. As GDH lies at the intersection of several metabolic pathways, its activity is tightly regulated by several allosteric compounds that are metabolic intermediates. In contrast to other mammals that have a single GDH-encoding gene, humans and great apes possess two isoforms of GDH (hGDH1 and hGDH2, encoded by the GLUD1 and GLUD2 genes, respectively) with distinct regulation pattern, but remarkable sequence similarity (they differ, in their mature form, in only 15 of their 505 amino-acids). The GLUD2 gene is considered a very young gene, emerging from the GLUD1 gene through retro-position only recently (<23 million years ago). The new hGDH2 iso-enzyme, through random mutations and natural selection, is thought to have conferred an evolutionary advantage that helped its persistence through primate evolution. The properties of the two highly homologous human GDHs have been studied using purified recombinant hGDH1 and hGDH2 proteins obtained by expression of the corresponding cDNAs in Sf21 cells. According to these studies, in contrast to hGDH1 that maintains basal activity at 35-40 % of its maximal, hGDH2 displays low basal activity that is highly responsive to activation by rising levels of ADP and/or L-leucine which can also act synergistically. While hGDH1 is inhibited potently by GTP, hGDH2 shows remarkable GTP resistance. Furthermore, the two iso-enzymes are differentially inhibited by estrogens, polyamines and neuroleptics, and also differ in heat-lability. To elucidate the molecular mechanisms that underlie these different regulation patterns of the two iso-enzymes (and consequently the evolutionary adaptation of hGDH2 to a new functional role), we have performed mutagenesis at sites of difference in their amino acid sequence. Results showed that the low basal activity, heat-lability and estrogen sensitivity of hGDH2 could be, at least partially, ascribed to the Arg443Ser evolutionary change, whereas resistance to GTP inhibition has been attributed to the Gly456Ala change. Other amino acid substitutions studied thus far cannot explain all the remaining functional differences between the two iso-enzymes. Also, the Arg443Ser/Gly456Ala double mutation in hGDH1 approached the properties of wild-type hGDH2, without being identical to it. The insights into the structural mechanism of enzymatic regulation and the implications in cell biology provided by these findings are discussed.


Asunto(s)
Evolución Biológica , Glutamato Deshidrogenasa/metabolismo , Mutación/genética , Regulación Alostérica/genética , Regulación Alostérica/fisiología , Animales , Glutamato Deshidrogenasa/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Unión Proteica
3.
Biochem Cell Biol ; 87(3): 505-16, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19448744

RESUMEN

Mammalian glutamate dehydrogenase (GDH), an enzyme central to glutamate metabolism, is thought to localize to the mitochondrial matrix, although there are also suggestions for the extramitochondrial presence of this protein. Whereas GDH in mammals is encoded by the GLUD1 gene, humans and the great apes have, in addition, a GLUD2 gene showing a distinct expression pattern. The encoded hGDH1 and hGDH2 isoenzymes are highly homologous, but their leader sequences are more divergent. To explore their subcellular targeting, we constructed expression vectors in which hGDH1 or hGDH2 was fused with the enhanced green fluorescent protein (EGFP) and used these to transfect COS 7, HeLa, CHO, HEK293, or neuroblastoma SHSY-5Y cells. Confocal microscopy revealed GDH-EGFP fluorescence in the cytoplasm within coarse structures. Cotransfection experiments using organelle-specific markers revealed that hGDH1 or hGDH2 colocalized with the mitochondrial marker DsRed2-Mito and to a lesser extent with the endoplasmic reticulum marker DsRed2-ER. Western blots detected two GDH-EGFP specific bands: a ~90 kDa band and a ~95 kDa band associated with the mitochondria and the endoplasmic reticulum containing cytosol, respectively. Deletion of the signal sequence, while altering drastically the fluoresce distribution within the cell, prevented GDH from entering the mitochondria, with the ~90 kDa band being retained in the cytosol. In addition, the deletion eliminated the ~95 kDa band from cell lysates, thus confirming that it represents the full-length GDH. Hence, while most of the hGDHs translocate into the mitochondria (a process associated with cleavage of the signal sequence), part of the protein localizes to the endoplasmic reticulum, probably serving additional functions.


Asunto(s)
Retículo Endoplásmico/enzimología , Glutamato Deshidrogenasa/metabolismo , Isoenzimas/metabolismo , Mitocondrias/enzimología , Animales , Secuencia de Bases , Western Blotting , Línea Celular , Cartilla de ADN , Glutamato Deshidrogenasa/genética , Humanos , Isoenzimas/genética , Microscopía Confocal , Plásmidos , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA