Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Lett ; 27(8): e14488, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39092560

RESUMEN

A significant fraction of Earth's ecosystems undergoes periodic wet-dry alternating transitional states. These globally distributed water-driven transitional ecosystems, such as intermittent rivers and coastal shorelines, have traditionally been studied as two distinct entities, whereas they constitute a single, interconnected meta-ecosystem. This has resulted in a poor conceptual and empirical understanding of water-driven transitional ecosystems. Here, we develop a conceptual framework that places the temporal availability of water as the core driver of biodiversity and functional patterns of transitional ecosystems at the global scale. Biological covers (e.g., aquatic biofilms and biocrusts) serve as an excellent model system thriving in both aquatic and terrestrial states, where their succession underscores the intricate interplay between these two states. The duration, frequency, and rate of change of wet-dry cycles impose distinct plausible scenarios where different types of biological covers can occur depending on their desiccation/hydration resistance traits. This implies that the distinct eco-evolutionary potential of biological covers, represented by their trait profiles, would support different functions while maintaining similar multifunctionality levels. By embracing multiple alternating transitional states as interconnected entities, our approach can help to better understand and manage global change impacts on biodiversity and multifunctionality in water-driven transitional ecosystems, while providing new avenues for interdisciplinary studies.


Asunto(s)
Biodiversidad , Ecosistema , Biopelículas
2.
Sci Total Environ ; 937: 173466, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38788941

RESUMEN

Predicting how multiple anthropogenic stressors affect natural ecosystems is a major challenge in ecology. Freshwater ecosystems are threatened worldwide by multiple co-occurring stressors, which can affect aquatic biodiversity, ecosystem functioning and human wellbeing. In stream ecosystems, aquatic fungi play a crucial role in global biogeochemical cycles and food web dynamics, therefore, assessing the functional consequences of fungal biodiversity loss under multiple stressors is crucial. Here, a microcosm approach was used to investigate the effects of multiple stressors (increased temperature and nutrients, drying, and biodiversity loss) on three ecosystem processes: organic matter decomposition, fungal reproduction, and fungal biomass accrual. Net effects of stressors were antagonistic for organic matter decomposition, but additive for fungal reproduction and biomass accrual. Net effects of biodiversity were mainly positive for all processes, even under stress, demonstrating that diversity assures the maintenance of ecosystem processes. Fungal species displayed distinct contributions to each ecosystem process. Furthermore, species with negligible contributions under control conditions changed their role under stress, either enhancing or impairing the communities' performance, emphasizing the importance of fungal species identity. Our study highlights that distinct fungal species have different sensitivities to environmental variability and have different influence on the overall performance of the community. Therefore, preserving high fungal diversity is crucial to maintain fungal species with key ecosystem functions within aquatic communities in face of environmental change.


Asunto(s)
Biodiversidad , Ecosistema , Agua Dulce , Hongos , Hongos/fisiología , Biomasa , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA