Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chembiochem ; 25(7): e202300838, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38403952

RESUMEN

Cupin/methionyl-tRNA synthetase (MetRS)-like didomain enzymes catalyze nitrogen-nitrogen (N-N) bond formation between Nω-hydroxylamines and amino acids to generate hydrazines, key biosynthetic intermediates of various natural products containing N-N bonds. While the combination of these two building blocks leads to the creation of diverse hydrazine products, the full extent of their structural diversity remains largely unknown. To explore this, we herein conducted phylogeny-guided genome-mining of related hydrazine biosynthetic pathways consisting of two enzymes: flavin-dependent Nω-hydroxylating monooxygenases (NMOs) that produce Nω-hydroxylamine precursors and cupin/MetRS-like enzymes that couple the Nω-hydroxylamines with amino acids via N-N bonds. A phylogenetic analysis identified the largely unexplored sequence spaces of these enzyme families. The biochemical characterization of NMOs demonstrated their capabilities to produce various Nω-hydroxylamines, including those previously not known as precursors of N-N bonds. Furthermore, the characterization of cupin/MetRS-like enzymes identified five new hydrazine products with novel combinations of building blocks, including one containing non-amino acid building blocks: 1,3-diaminopropane and putrescine. This study substantially expanded the variety of N-N bond forming pathways mediated by cupin/MetRS-like enzymes.


Asunto(s)
Metionina-ARNt Ligasa , Metionina-ARNt Ligasa/química , Metionina-ARNt Ligasa/genética , Metionina-ARNt Ligasa/metabolismo , Filogenia , Hidrazinas , Bacterias/metabolismo , Aminoácidos/genética , Hidroxilaminas , Nitrógeno
2.
Angew Chem Int Ed Engl ; 62(29): e202305155, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37194491

RESUMEN

Heterocycles with nitrogen-nitrogen (N-N) bonds are privileged building blocks of synthetic drugs. They are also found in natural products, although the biosynthetic logic behind them is poorly understood. Actinopyridazinones produced by Streptomyces sp. MSD090630SC-05 possess unique dihydropyridazinone rings that have been studied as core nuclei in several approved synthetic therapeutics. Herein, we performed gene knockouts and in vitro biochemical experiments to elucidate the major steps in actinopyridazinone biosynthesis, including the unprecedented carrier protein mediated machinery for dihydropyridazinone formation.


Asunto(s)
Productos Biológicos , Streptomyces , Proteínas Portadoras/metabolismo , Streptomyces/metabolismo , Productos Biológicos/química , Nitrógeno/metabolismo , Familia de Multigenes
3.
J Am Chem Soc ; 144(28): 12954-12960, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35771530

RESUMEN

Nitrogen-nitrogen bond-containing functional groups are rare, but they are found in a considerably wide class of natural products. Recent clarifications of the biosynthetic routes for such functional groups shed light onto overlooked biosynthetic genes distributed across the bacterial kingdom, highlighting the presence of yet-to-be identified natural products with peculiar functional groups. Here, the genome-mining approach targeting a unique hydrazine-forming gene led to the discovery of actinopyridazinones A (1) and B (2), the first natural products with dihydropyridazinone rings. The structure of actinopyridazinone A was unambiguously established by total synthesis. Biosynthetic studies unveiled the structural diversity of natural hydrazines derived from this family of N-N bond-forming enzymes.


Asunto(s)
Productos Biológicos , Familia de Multigenes , Productos Biológicos/química , Hidrazinas/química , Nitrógeno
4.
Beilstein J Org Chem ; 18: 1017-1025, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051562

RESUMEN

Only a few azoxy natural products have been identified despite their intriguing biological activities. Azodyrecins D-G, four new analogs of aliphatic azoxides, were identified from two Streptomyces species by a reactivity-based screening that targets azoxy bonds. A biological activity evaluation demonstrated that the double bond in the alkyl side chain is important for the cytotoxicity of azodyrecins. An in vitro assay elucidated the tailoring step of azodyrecin biosynthesis, which is mediated by the S-adenosylmethionine (SAM)-dependent methyltransferase Ady1. This study paves the way for the targeted isolation of aliphatic azoxy natural products through a genome-mining approach and further investigations of their biosynthetic mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA