Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Lasers Surg Med ; 56(2): 186-196, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38226735

RESUMEN

BACKGROUND AND OBJECTIVES: The use of ablative fractional lasers to enhance the delivery of topical drugs through the skin is known as laser-assisted drug delivery. Here, we compare a novel 3050/3200 nm difference frequency generation (DFG) fiber laser (spot size: 40 µm) to a commercially used CO2 laser (spot size: 120 µm). The objective is to determine whether differences in spot size and coagulation zone (CZ) thickness influence drug uptake. MATERIALS AND METHODS: Fractional ablation was performed on ex-vivo human abdominal skin with the DFG (5 mJ) and CO2 (12 mJ) lasers to generate 680 µm deep lesions. To evaluate drug delivery, 30 kDa encapsulated fluorescent dye was topically applied to the skin and histologically analyzed at skin depths of 100, 140, 200, 400, and 600 µm. Additionally, transcutaneous permeation of encapsulated and 350 Da nonencapsulated dye was assessed using Franz Cells. RESULTS: The DFG laser generated smaller channels (diameter: 56.5 µm) with thinner CZs (thickness: 22.4 µm) than the CO2 laser (diameter: 75.9 µm, thickness: 66.8 µm). The DFG laser treated group exhibited significantly higher encapsulated dye total fluorescence intensities after 3 h compared to the CO2 laser treated group across all skin depths (p < 0.001). Permeation of nonencapsulated dye was also higher in the DFG laser treated group vs the CO2 laser treated group after 48 h (p < 0.0001), while encapsulated dye was not detected in any group. CONCLUSION: The DFG laser treated skin exhibited significantly higher total fluorescence uptake compared to the CO2 laser. Additionally, the smaller spot size and thinner CZ of the DFG laser could result in faster wound healing and reduced adverse effects while delivering similar or greater amount of topically applied drugs.


Asunto(s)
Dióxido de Carbono , Láseres de Gas , Humanos , Administración Cutánea , Dióxido de Carbono/farmacología , Preparaciones Farmacéuticas , Piel/patología , Láseres de Gas/uso terapéutico
2.
Lasers Surg Med ; 54(6): 851-860, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35395696

RESUMEN

BACKGROUND AND OBJECTIVES: Mid-infrared (IR) ablative fractional laser treatments are highly efficacious for improving the appearance of a variety of dermatological conditions such as photo-aged skin. However, articulated arms are necessary to transmit the mid-IR light to the skin, which restricts practicality and clinical use. Here, we have assessed and characterized a novel fiber laser-pumped difference frequency generation (DFG) system that generates ablative fractional lesions and compared it to clinically and commercially available thulium fiber, Erbium:YAG (Er:YAG), and CO2 lasers. MATERIALS AND METHODS: An investigational 20 W, 3050/3200 nm fiber laser pumped DFG system with a focused spot size of 91 µm was used to generate microscopic ablation arrays in ex vivo human skin. Several pulse energies (10-70 mJ) and pulse durations (2-14 ms) were applied and lesion dimensions were assessed histologically using nitro-blue tetrazolium chloride stain. Ablation depths and coagulative thermal damage zones were analyzed across three additional laser systems. RESULTS: The investigational DFG system-generated deep (>2 mm depth) and narrow (<100 µm diameter) ablative lesions surrounded by thermal coagulative zones of at least 20 µm thickness compared to 13, 40, and 320 µm by the Er:YAG, CO2 , and Thulium laser, respectively. CONCLUSION: The DFG system is a small footprint device that offers a flexible fiber delivery system for ablative fractional laser treatments, thereby overcoming the requirement of an articulated arm in current commercially available ablative lasers. The depth and width of the ablated microcolumns and the extent of surrounding coagulation can be controlled; this concept can be used to design new treatment procedures for specific indications. Clinical improvements and safety are not the subject of this study and need to be explored with in vivo clinical studies.


Asunto(s)
Dermatología , Terapia por Láser , Láseres de Gas , Láseres de Estado Sólido , Envejecimiento de la Piel , Anciano , Dióxido de Carbono , Humanos , Terapia por Láser/métodos , Láseres de Gas/uso terapéutico , Láseres de Estado Sólido/uso terapéutico , Piel/patología , Tulio
3.
Lasers Surg Med ; 52(5): 437-448, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31518014

RESUMEN

BACKGROUND AND OBJECTIVES: To evaluate the feasibility of using a novel blue diode laser (blue laser), a thulium fiber laser (Tm laser), and their combination as a directed-energy surgical tool in laparoscopic partial nephrectomy (LPN). STUDY DESIGN/MATERIALS AND METHODS: The blue laser emitting at 442 nm, the Tm laser emitting at 1,940 nm wavelengths, and the combination of them were tested. First, cutting and coagulative abilities of the lasers were characterized ex vivo on porcine kidney in air and CO2 . Histological staining was performed to assess the efficiency of ablation and coagulation. Next, experimental LPN was performed on a porcine model at zero ischemia. Upper and lower segments of both kidneys were resected. Total operation time and resection time were measured; bleeding and carbonization were evaluated. RESULTS: Ex vivo data show that laser-induced ablation and coagulation processes do not differ substantially between CO2 and air environments. Histological analysis of ex vivo incisions demonstrates that the blue laser produced deep ablation with relatively narrow coagulation zone, whereas Tm laser was less efficient in terms of ablation but possessed excellent coagulative properties. Experimental LPN revealed that the blue laser provided fast cutting with minimal carbonization, whereas Tm laser induced slow cutting with strong carbonization. The combination of the blue and Tm lasers provided the most promising results demonstrating the highest resection rate, almost carbonization free resection surface and clinically acceptable hemostasis enabling LPN without the need for vessel clamping. CONCLUSIONS: The blue laser can be efficiently utilized in LPN. Furthermore, the combination of the blue and Tm lasers into a single modality may be beneficial for further development of successful laser-assisted LPN. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Laparoscopía/instrumentación , Terapia por Láser/instrumentación , Láseres de Semiconductores/uso terapéutico , Nefrectomía/instrumentación , Animales , Diseño de Equipo , Porcinos , Tulio , Técnicas de Cultivo de Tejidos
4.
Dev Biol ; 378(1): 25-37, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23518338

RESUMEN

Isl1 is a LIM homeobox transcription factor showing conserved expression in the developing and mature vertebrate pancreas. So far, functions of pancreatic Isl1 have mainly been studied in the mouse, where Isl1 has independent functions during formation of exocrine and endocrine tissues. Here, we take advantage of a recently described isl1 mutation in zebrafish to address pancreatic isl1 functions in a non-mammalian system. Isl1 in zebrafish, as in mouse, shows transient expression in mesenchyme flanking the pancreatic endoderm, and continuous expression in all endocrine cells. In isl1 mutants, endocrine cells are specified in normal numbers but more than half of these cells fail to establish expression of endocrine hormones. By using a lineage tracking approach that highlights cells leaving cell cycle early in development, we show that isl1 functions are different in first and second wave endocrine cells. In isl1 mutants, early forming first wave cells show virtually no glucagon expression and a reduced number of cells expressing insulin and somatostatin, while in the later born second wave cells somatostatin expressing cells are strongly reduced and insulin and glucagon positive cells form in normal numbers. Isl1 mutant zebrafish also display a smaller exocrine pancreas. We find that isl1 expression in the pancreatic mesenchyme overlaps with that of the related genes isl2a and isl2b and that pancreatic expression of isl-genes is independent of each other. As a combined block of two or three isl1/2 genes results in a dose-dependent reduction of exocrine tissue, our data suggest that all three genes cooperatively contribute to non-cell autonomous exocrine pancreas extension. The normal expression of the pancreas mesenchyme markers meis3, fgf10 and fgf24 in isl1/2 depleted embryos suggests that this activity is independent of isl-gene function in pancreatic mesenchyme formation as was found in mouse. This indicates species-specific differences in the requirement for isl-genes in pancreatic mesenchyme formation. Overall, our data reveal a novel interaction of isl1 and isl2 genes in exocrine pancreas expansion and cell type specific requirements during endocrine cell maturation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Islotes Pancreáticos/embriología , Páncreas/embriología , Pez Cebra/embriología , Animales , Glucagón/metabolismo , Hibridación in Situ , Insulina/metabolismo , Mesodermo/metabolismo , Ratones , Microscopía Fluorescente/métodos , Organogénesis/genética , Factores de Tiempo , Distribución Tisular , Factores de Transcripción/metabolismo
5.
Dev Biol ; 365(1): 290-302, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22426004

RESUMEN

Differentiation of insulin producing beta-cells is a genetically well defined process that involves functions of various conserved transcription factors. Still, the transcriptional mechanisms underlying specification and determination of beta-cell fate are poorly defined. Here we provide the description of a beta-cell progenitor specific enhancer as a model to study initial steps of beta-cell differentiation. We show that evolutionary non-conserved upstream sequences of the zebrafish hb9 gene are required and sufficient for regulating expression in beta-cells prior to the onset of insulin expression. This enhancer contains binding sites for paired-box transcription factors and two E-boxes that in EMSA studies show interaction with Pax6b and NeuroD, respectively. We show that Pax6b is a potent activator of endodermal hb9 expression and that this activation depends on the beta-cell enhancer. Using genetic approaches we show that pax6b is crucial for maintenance but not induction of pancreatic hb9 transcription. As loss of Pax6b or Hb9 independently results in the loss of insulin expression, the data reveal a novel cross-talk between the two essential regulators of early beta-cell differentiation. While we find that the known pancreatic E-box binding proteins NeuroD and Ngn3 are not required for hb9 expression we also show that removal of both E-boxes selectively eliminates pancreatic specific reporter expression. The data provide evidence for an Ngn3 independent pathway of beta-cell specification that requires function of currently not specified E-box binding factors.


Asunto(s)
Proteínas del Ojo/fisiología , Proteínas de Homeodominio/fisiología , Células Secretoras de Insulina , Factores de Transcripción Paired Box/fisiología , Proteínas Represoras/fisiología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/citología , Islotes Pancreáticos/embriología , Proteínas del Tejido Nervioso/fisiología , Factor de Transcripción PAX6 , Transducción de Señal , Células Madre/fisiología
6.
Int J Pharm ; 408(1-2): 191-9, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21295123

RESUMEN

It was the aim of the present study to evaluate and compare the distribution of thiolated mucoadhesive anionic poly(acrylic acid) (PAA) and cationic chitosan (CS) nanoparticles on intestinal mucosa. Modifications of these polymers were achieved by conjugation with cysteine (PAA-Cys) and 2-iminothiolane (CS-TBA). Nanoparticles (NP) were prepared by ionic gelation and labelled with the strong hydrophilic fluorescent dye Alexa Fluor 488 (AF 488) and hydrophobic fluorescein diacetate (FDA). Unmodified and modified CS and PAA NP were examined in vitro in terms of their mucoadhesive and mucus penetrating properties on the mucosa of rat small intestine. To investigate the transport of NP across the mucus layer, their diffusion behaviour through natural porcine intestinal mucus was studied through a new diffusion method developed by our group. Lyophilised particles displayed 526 µmol/g (CS) and 513 µmol/g (PAA) of free thiol groups and a zeta potential of 20 mV (CS) and -14 mV for PAA NP. Nanoparticle distribution on rat intestine suggested that mucoadhesion of thiolated NP is higher than the diffusion into the intestinal mucosa. Modified particles displayed more than a 6-fold increase in mucoadhesion compared to unmodified ones. The rank order with regard to mucoadhesion of all particles was: CS-TBA>PAA-Cys>CS>PAA, whereas CS-TBA showed 2-fold higher mucoadhesive properties compared to PAA-Cys NP. Diffusion through intestinal mucus was much higher for unmodified than for thiolated as well as for anionic compared to cationic particles. Overall, it was shown that thiolated particles of both anionic and cationic polymers have improved mucoadhesive properties and could be promising carriers for mucosal drug delivery.


Asunto(s)
Resinas Acrílicas/farmacocinética , Quitosano/análogos & derivados , Cisteína/análogos & derivados , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Nanopartículas , Compuestos de Sulfhidrilo/farmacocinética , Resinas Acrílicas/síntesis química , Resinas Acrílicas/química , Animales , Aniones , Transporte Biológico , Cationes , Adhesión Celular , Quitosano/síntesis química , Quitosano/química , Quitosano/farmacocinética , Cisteína/síntesis química , Cisteína/química , Cisteína/farmacocinética , Difusión , Técnicas In Vitro , Absorción Intestinal , Microscopía Fluorescente , Nanopartículas/química , Tamaño de la Partícula , Ratas , Compuestos de Sulfhidrilo/síntesis química , Compuestos de Sulfhidrilo/química , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA