Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Hum Genet ; 110(1): 146-160, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608681

RESUMEN

Neddylation has been implicated in various cellular pathways and in the pathophysiology of numerous diseases. We identified four individuals with bi-allelic variants in NAE1, which encodes the neddylation E1 enzyme. Pathogenicity was supported by decreased NAE1 abundance and overlapping clinical and cellular phenotypes. To delineate how cellular consequences of NAE1 deficiency would lead to the clinical phenotype, we focused primarily on the rarest phenotypic features, based on the assumption that these would best reflect the pathophysiology at stake. Two of the rarest features, neuronal loss and lymphopenia worsening during infections, suggest that NAE1 is required during cellular stress caused by infections to protect against cell death. In support, we found that stressing the proteasome system with MG132-requiring upregulation of neddylation to restore proteasomal function and proteasomal stress-led to increased cell death in fibroblasts of individuals with NAE1 genetic variants. Additionally, we found decreased lymphocyte counts after CD3/CD28 stimulation and decreased NF-κB translocation in individuals with NAE1 variants. The rarest phenotypic feature-delayed closure of the ischiopubic rami-correlated with significant downregulation of RUN2X and SOX9 expression in transcriptomic data of fibroblasts. Both genes are involved in the pathophysiology of ischiopubic hypoplasia. Thus, we show that NAE1 plays a major role in (skeletal) development and cellular homeostasis during stress. Our approach suggests that a focus on rare phenotypic features is able to provide significant pathophysiological insights in diseases caused by mutations in genes with pleiotropic effects.


Asunto(s)
Discapacidad Intelectual , Linfopenia , Humanos , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Transducción de Señal/genética , Discapacidad Intelectual/genética , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Linfopenia/genética
2.
Phys Chem Chem Phys ; 20(46): 29212-29220, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30427333

RESUMEN

Class B G protein-coupled receptors (GPCRs) are involved in a variety of human pathophysiological states. These groups of membrane receptors are less studied than class A GPCRs due to the lack of structural information, delayed small molecule drug discovery, and scarce fluorescence detection tools available. The class B corticotropin-releasing hormone type 1 receptor (CRHR1) is a key player in the stress response whose dysregulation is critically involved in stress-related disorders: psychiatric conditions (i.e. depression, anxiety, and addictions), neuroendocrinological alterations, and neurodegenerative diseases. Here, we present a strategy to label GPCRs with a small fluorescent antagonist that permits the observation of the receptor in live cells through stochastic optical reconstruction microscopy (STORM) with 23 nm resolution. The marker, an aza-BODIPY derivative, was designed based on computational docking studies, then synthesized, and finally tested in biological cells. Experiments on hippocampal neurons demonstrate antagonist effects in similar concentrations as the well-established antagonist CP-376395. A quantitative analysis of two color STORM images enabled the determination of the binding affinity of the new marker in the cellular environment.


Asunto(s)
Simulación del Acoplamiento Molecular , Nanotecnología , Imagen Óptica , Receptores de Hormona Liberadora de Corticotropina/química , Biomarcadores/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Humanos , Microscopía Fluorescente , Estructura Molecular , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores
3.
Sci Adv ; 10(21): eadj8769, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787942

RESUMEN

Circular RNAs (circRNAs) are a large class of noncoding RNAs. Despite the identification of thousands of circular transcripts, the biological significance of most of them remains unexplored, partly because of the lack of effective methods for generating loss-of-function animal models. In this study, we focused on circTulp4, an abundant circRNA derived from the Tulp4 gene that is enriched in the brain and synaptic compartments. By creating a circTulp4-deficient mouse model, in which we mutated the splice acceptor site responsible for generating circTulp4 without affecting the linear mRNA or protein levels, we were able to conduct a comprehensive phenotypic analysis. Our results demonstrate that circTulp4 is critical in regulating neuronal and brain physiology, modulating the strength of excitatory neurotransmission and sensitivity to aversive stimuli. This study provides evidence that circRNAs can regulate biologically relevant functions in neurons, with modulatory effects at multiple levels of the phenotype, establishing a proof of principle for the regulatory role of circRNAs in neural processes.


Asunto(s)
Encéfalo , ARN Circular , Transmisión Sináptica , ARN Circular/genética , Animales , Ratones , Encéfalo/metabolismo , Encéfalo/fisiología , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología
4.
Methods Cell Biol ; 149: 239-257, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30616823

RESUMEN

The development of live-cell sensors for real-time measurement of signaling responses, with improved spatial and temporal resolution with respect to classical biochemical methods, has changed our understanding of cellular signaling. Examination of cAMP generation downstream activated GPCRs has shown that signaling responses can be short-lived (generated from the cell surface) or prolonged after receptor internalization. Class B secretin-like Corticotropin-releasing hormone receptor 1 (CRHR1) is a key player in stress pathophysiology. By monitoring real-time signaling in living cells, we uncovered cell context-dependent temporal characteristics of CRHR1-elicited cAMP responses and disclosed a specific link between cAMP generation and receptor signaling from internal compartments. We describe technical aspects and elaborate the protocols for cell line expression of Förster resonance energy transfer (FRET)-based biosensors to study the dynamics of cAMP and calcium signaling responses downstream activated CRHR1, live-cell imaging and analysis, and fluorescence flow cytometry to determine receptor levels at the cell surface.


Asunto(s)
Sistemas de Computación , Endocitosis , Transferencia Resonante de Energía de Fluorescencia/métodos , Receptores de Hormona Liberadora de Corticotropina/agonistas , Transducción de Señal , Animales , Calcio/metabolismo , Línea Celular , AMP Cíclico/metabolismo , Humanos , Ratones , Ratas , Receptores de Hormona Liberadora de Corticotropina/metabolismo
5.
Endocr Connect ; 6(6): R99-R120, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28710078

RESUMEN

Corticotropin-releasing hormone (CRH) is a key player of basal and stress-activated responses in the hypothalamic-pituitary-adrenal axis (HPA) and in extrahypothalamic circuits, where it functions as a neuromodulator to orchestrate humoral and behavioral adaptive responses to stress. This review describes molecular components and cellular mechanisms involved in CRH signaling downstream of its G protein-coupled receptors (GPCRs) CRHR1 and CRHR2 and summarizes recent findings that challenge the classical view of GPCR signaling and impact on our understanding of CRHRs function. Special emphasis is placed on recent studies of CRH signaling that revealed new mechanistic aspects of cAMP generation and ERK1/2 activation in physiologically relevant contexts of the neurohormone action. In addition, we present an overview of the pathophysiological role of the CRH system, which highlights the need for a precise definition of CRHRs signaling at molecular level to identify novel targets for pharmacological intervention in neuroendocrine tissues and specific brain areas involved in CRH-related disorders.

6.
Sci Rep ; 7(1): 1944, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28512295

RESUMEN

Corticotropin-releasing hormone receptor 1 (CRHR1) activates the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). Both cAMP sources were shown to be required for the phosphorylation of ERK1/2 triggered by activated G protein coupled receptor (GPCR) CRHR1 in neuronal and neuroendocrine contexts. Here, we show that activated CRHR1 promotes growth arrest and neurite elongation in neuronal hippocampal cells (HT22-CRHR1 cells). By characterising CRHR1 signalling mechanisms involved in the neuritogenic effect, we demonstrate that neurite outgrowth in HT22-CRHR1 cells takes place by a sAC-dependent, ERK1/2-independent signalling cascade. Both tmACs and sAC are involved in corticotropin-releasing hormone (CRH)-mediated CREB phosphorylation and c-fos induction, but only sAC-generated cAMP pools are critical for the neuritogenic effect of CRH, further highlighting the engagement of two sources of cAMP downstream of the activation of a GPCR, and reinforcing the notion that restricted cAMP microdomains may regulate independent cellular processes.


Asunto(s)
Diferenciación Celular , AMP Cíclico/metabolismo , Células Piramidales/citología , Células Piramidales/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Adenilil Ciclasas/sangre , Adenilil Ciclasas/metabolismo , Animales , Biomarcadores , Proteína de Unión a CREB/metabolismo , Puntos de Control del Ciclo Celular , Supervivencia Celular , Células Cultivadas , Hormona Liberadora de Corticotropina/metabolismo , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA