RESUMEN
A real-time PCR assay was developed to identify varicella-zoster virus (VZV) and herpes simplex virus (HSV) DNA in clinical specimens from subjects with suspected herpes zoster (HZ; shingles). Three sets of primers and probes were used in separate PCR reactions to detect and discriminate among wild-type VZV (VZV-WT), Oka vaccine strain VZV (VZV-Oka), and HSV DNA, and the reaction for each virus DNA was multiplexed with primers and probe specific for the human beta-globin gene to assess specimen adequacy. Discrimination of all VZV-WT strains, including Japanese isolates and the Oka parent strain, from VZV-Oka was based upon a single nucleotide polymorphism at position 106262 in ORF 62, resulting in preferential amplification by the homologous primer pair. The assay was highly sensitive and specific for the target virus DNA, and no cross-reactions were detected with any other infectious agent. With the PCR assay as the gold standard, the sensitivity of virus culture was 53% for VZV and 77% for HSV. There was 92% agreement between the clinical diagnosis of HZ by the Clinical Evaluation Committee and the PCR assay results.
Asunto(s)
Vacuna contra la Varicela , Vacunas contra el Virus del Herpes Simple , Herpesvirus Humano 3/clasificación , Herpesvirus Humano 3/genética , Reacción en Cadena de la Polimerasa/métodos , Simplexvirus/clasificación , Simplexvirus/genética , Cartilla de ADN , Diagnóstico Diferencial , Herpes Simple/diagnóstico , Herpes Zóster/diagnóstico , Herpesvirus Humano 3/aislamiento & purificación , Humanos , Reacción en Cadena de la Polimerasa/normas , Polimorfismo de Nucleótido Simple , Estándares de Referencia , Sensibilidad y Especificidad , Simplexvirus/aislamiento & purificación , Vacunas , Globinas beta/genéticaRESUMEN
BACKGROUND: A phase III, randomized, double-blind, placebo-controlled clinical study was conducted in China to assess the efficacy, safety, and immunogenicity of the pentavalent rotavirus vaccine (RotaTeqTM, RV5) among Chinese infants. The efficacy and safety data have been previously reported. This report presents the immunogenicity data of the study. METHODS: 4,040 infants aged 6-12â¯weeks were randomly assigned in a 1:1 ratio to receive 3 oral doses of RV5 or placebo. Trivalent oral poliovirus vaccine (tOPV) and diphtheria, tetanus, and acellular pertussis vaccine (DTaP) were administered in a staggered-use (Nâ¯=â¯3,240) or concomitant-use (Nâ¯=â¯800) schedule. Immunogenicity of RV5 was evaluated in 800 participants (400 participants from each staggered- and concomitant-use immunogenicity subgroup). Geometric mean titers (GMTs) and seroresponse rates (≥3-fold rise from baseline to PD3) were measured for anti-rotavirus IgA in the staggered- and concomitant-use subgroups and measured for serum neutralizing antibodies (SNAs) to human rotavirus serotypes G1, G2, G3, G4, P1A[8] in the staggered-use subgroup. Immune responses to tOPV and DTaP co-administered with RV5 were also evaluated in the concomitant-use immunogenicity subgroup. (ClinicalTrials.gov registry: NCT02062385) RESULTS: The PD3 GMT and seroresponse rate of anti-rotavirus IgA were higher in the RV5 group (82.42 units/mL, 89.4%) compared to the placebo group (0.33 units/mL, 10.1%). Rotavirus type-specific SNA responses were also higher in the RV5 group compared to the placebo group. In the concomitant-use subgroup, the seroprotection rates of anti-poliovirus type 1, 2, 3 in the participants who received RV5 were non-inferior to those who received placebo, and the antibody responses to DTaP antigens were comparable between the two vaccination groups. CONCLUSIONS: RV5 was immunogenic in Chinese infants. Immune responses induced by tOPV and DTaP were not affected by the concomitant use of RV5.
Asunto(s)
Gastroenteritis/inmunología , Gastroenteritis/prevención & control , Inmunogenicidad Vacunal , Infecciones por Rotavirus/inmunología , Infecciones por Rotavirus/prevención & control , Rotavirus/inmunología , Vacunas Virales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , China , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Lactante , Masculino , Vacunación , Vacunas Virales/administración & dosificación , Vacunas Virales/efectos adversosRESUMEN
Clostridium difficile strains producing binary toxin, in addition to toxin A (TcdA) and toxin B (TcdB), have been associated with more severe disease and increased recurrence of C. difficile infection in recent outbreaks. Binary toxin comprises two subunits (CDTa and CDTb) and catalyzes the ADP-ribosylation of globular actin (G-actin), which leads to the depolymerization of filamentous actin (F-actin) filaments. A robust assay is highly desirable for detecting the cytotoxic effect of the toxin and the presence of neutralizing antibodies in animal and human sera to evaluate vaccine efficacy. We describe here the optimization, using design-of-experiment (DOE) methodology, of a high-throughput assay to measure the toxin potency and neutralizing antibodies (NAb) against binary toxin. Vero cells were chosen from a panel of cells screened for sensitivity and specificity. We have successfully optimized the CDTa-to-CDTb molar ratio, toxin concentration, cell-seeding density, and sera-toxin preincubation time in the NAb assay using DOE methodology. This assay is robust, produces linear results across serial dilutions of hyperimmune serum, and can be used to quantify neutralizing antibodies in sera from hamsters and monkeys immunized with C. difficile binary toxin-containing vaccines. The assay will be useful for C. difficile diagnosis, for epidemiology studies, and for selecting and optimizing vaccine candidates.
Asunto(s)
ADP Ribosa Transferasas/inmunología , Anticuerpos Neutralizantes/sangre , Proteínas Bacterianas/inmunología , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Chlorocebus aethiops , Cricetinae , Macaca mulatta , Células VeroRESUMEN
BACKGROUND: Notch receptors normally play a key role in guiding a variety of cell fate decisions during development and differentiation of metazoan organisms. On the other hand, dysregulation of Notch1 signaling is associated with many different types of cancer as well as tumor angiogenesis, making Notch1 a potential therapeutic target. PRINCIPAL FINDINGS: Here we report the in vitro activities of inhibitory Notch1 monoclonal antibodies derived from cell-based and solid-phase screening of a phage display library. Two classes of antibodies were found, one directed against the EGF-repeat region that encompasses the ligand-binding domain (LBD), and the second directed against the activation switch of the receptor, the Notch negative regulatory region (NRR). The antibodies are selective for Notch1, inhibiting Jag2-dependent signaling by Notch1 but not by Notch 2 and 3 in reporter gene assays, with EC(50) values as low as 5+/-3 nM and 0.13+/-0.09 nM for the LBD and NRR antibodies, respectively, and fail to recognize Notch4. While more potent, NRR antibodies are incomplete antagonists of Notch1 signaling. The antagonistic activity of LBD, but not NRR, antibodies is strongly dependent on the activating ligand. Both LBD and NRR antibodies bind to Notch1 on human tumor cell lines and inhibit the expression of sentinel Notch target genes, including HES1, HES5, and DTX1. NRR antibodies also strongly inhibit ligand-independent signaling in heterologous cells transiently expressing Notch1 receptors with diverse NRR "class I" point mutations, the most common type of mutation found in human T-cell acute lymphoblastic leukemia (T-ALL). In contrast, NRR antibodies failed to antagonize Notch1 receptors bearing rare "class II" or "class III" mutations, in which amino acid insertions generate a duplicated or constitutively sensitive metalloprotease cleavage site. Signaling in T-ALL cell lines bearing class I mutations is partially refractory to inhibitory antibodies as compared to cell-penetrating gamma-secretase inhibitors. CONCLUSIONS/SIGNIFICANCE: Antibodies that compete with Notch1 ligand binding or that bind to the negative regulatory region can act as potent inhibitors of Notch1 signaling. These antibodies may have clinical utility for conditions in which inhibition of signaling by wild-type Notch1 is desired, but are likely to be of limited value for treatment of T-ALLs associated with aberrant Notch1 activation.
Asunto(s)
Anticuerpos Monoclonales/farmacología , Mutación , Receptor Notch1/inmunología , Transducción de Señal/efectos de los fármacos , Células 3T3 , Animales , Especificidad de Anticuerpos/inmunología , Sitios de Unión/genética , Sitios de Unión/inmunología , Unión Competitiva , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-2 , Ligandos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Receptor Notch1/genética , Receptor Notch1/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Mitochondrial fission and fusion are linked to synaptic activity in healthy neurons and are implicated in the regulation of apoptotic cell death in many cell types. We developed fluorescence microscopy and computational strategies to directly measure mitochondrial fission and fusion frequencies and their effects on mitochondrial morphology in cultured neurons. We found that the rate of fission exceeds the rate of fusion in healthy neuronal processes, and, therefore, the fission/fusion ratio alone is insufficient to explain mitochondrial morphology at steady state. This imbalance between fission and fusion is compensated by growth of mitochondrial organelles. Bcl-x(L) increases the rates of both fusion and fission, but more important for explaining the longer organelle morphology induced by Bcl-x(L) is its ability to increase mitochondrial biomass. Deficits in these Bcl-x(L)-dependent mechanisms may be critical in neuronal dysfunction during the earliest phases of neurodegeneration, long before commitment to cell death.