Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
EMBO J ; 42(18): e113378, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37431920

RESUMEN

In virus-host interactions, nucleic acid-directed first lines of defense that allow viral clearance without compromising growth are of paramount importance. Plants use the RNA interference pathway as a basal antiviral immune system, but additional RNA-based mechanisms of defense also exist. The infectivity of a plant positive-strand RNA virus, alfalfa mosaic virus (AMV), relies on the demethylation of viral RNA by the recruitment of the cellular N6-methyladenosine (m6 A) demethylase ALKBH9B, but how demethylation of viral RNA promotes AMV infection remains unknown. Here, we show that inactivation of the Arabidopsis cytoplasmic YT521-B homology domain (YTH)-containing m6 A-binding proteins ECT2, ECT3, and ECT5 is sufficient to restore AMV infectivity in partially resistant alkbh9b mutants. We further show that the antiviral function of ECT2 is distinct from its previously demonstrated function in the promotion of primordial cell proliferation: an ect2 mutant carrying a small deletion in its intrinsically disordered region is partially compromised for antiviral defense but not for developmental functions. These results indicate that the m6 A-YTHDF axis constitutes a novel branch of basal antiviral immunity in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Virus ARN , Antivirales , Proteínas de Plantas/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/metabolismo , ARN Viral/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
2.
Plant Cell ; 36(6): 2289-2309, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38466226

RESUMEN

Flowering plant genomes encode four or five DICER-LIKE (DCL) enzymes that produce small interfering RNAs (siRNAs) and microRNAs, which function in RNA interference (RNAi). Different RNAi pathways in plants effect transposon silencing, antiviral defense, and endogenous gene regulation. DCL2 acts genetically redundantly with DCL4 to confer basal antiviral defense. However, DCL2 may also counteract DCL4 since knockout of DCL4 causes growth defects that are suppressed by DCL2 inactivation. Current models maintain that RNAi via DCL2-dependent siRNAs is the biochemical basis of both effects. Here, we report that DCL2-mediated antiviral resistance and growth defects cannot be explained by the silencing effects of DCL2-dependent siRNAs. Both functions are defective in genetic backgrounds that maintain high levels of DCL2-dependent siRNAs, either with specific point mutations in DCL2 or with reduced DCL2 dosage because of heterozygosity for dcl2 knockout alleles. Intriguingly, all DCL2 functions require its catalytic activity, and the penetrance of DCL2-dependent growth phenotypes in dcl4 mutants correlates with DCL2 protein levels but not with levels of major DCL2-dependent siRNAs. We discuss this requirement and correlation with catalytic activity but not with resulting siRNAs, in light of other findings that reveal a DCL2 function in innate immunity activation triggered by cytoplasmic double-stranded RNA.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Interferencia de ARN , Ribonucleasa III , Arabidopsis/genética , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
3.
PLoS Genet ; 19(10): e1010980, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37816028

RESUMEN

YT521-B homology (YTH) domain proteins act as readers of N6-methyladenosine (m6A) in mRNA. Members of the YTHDF clade determine properties of m6A-containing mRNAs in the cytoplasm. Vertebrates encode three YTHDF proteins whose possible functional specialization is debated. In land plants, the YTHDF clade has expanded from one member in basal lineages to eleven so-called EVOLUTIONARILY CONSERVED C-TERMINAL REGION1-11 (ECT1-11) proteins in Arabidopsis thaliana, named after the conserved YTH domain placed behind a long N-terminal intrinsically disordered region (IDR). ECT2, ECT3 and ECT4 show genetic redundancy in stimulation of primed stem cell division, but the origin and implications of YTHDF expansion in higher plants are unknown, as it is unclear whether it involves acquisition of fundamentally different molecular properties, in particular of their divergent IDRs. Here, we use functional complementation of ect2/ect3/ect4 mutants to test whether different YTHDF proteins can perform the same function when similarly expressed in leaf primordia. We show that stimulation of primordial cell division relies on an ancestral molecular function of the m6A-YTHDF axis in land plants that is present in bryophytes and is conserved over YTHDF diversification, as it appears in all major clades of YTHDF proteins in flowering plants. Importantly, although our results indicate that the YTH domains of all arabidopsis ECT proteins have m6A-binding capacity, lineage-specific neo-functionalization of ECT1, ECT9 and ECT11 happened after late duplication events, and involves altered properties of both the YTH domains, and, especially, of the IDRs. We also identify two biophysical properties recurrent in IDRs of YTHDF proteins able to complement ect2 ect3 ect4 mutants, a clear phase separation propensity and a charge distribution that creates electric dipoles. Human and fly YTHDFs do not have IDRs with this combination of properties and cannot replace ECT2/3/4 function in arabidopsis, perhaps suggesting different molecular activities of YTHDF proteins between major taxa.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , ARN Mensajero/metabolismo , Familia de Multigenes , Péptidos y Proteínas de Señalización Intracelular/genética
4.
EMBO Rep ; 24(12): e57741, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38009565

RESUMEN

N6-methyladenosine (m6 A) in mRNA is key to eukaryotic gene regulation. Many m6 A functions involve RNA-binding proteins that recognize m6 A via a YT521-B Homology (YTH) domain. YTH domain proteins contain long intrinsically disordered regions (IDRs) that may mediate phase separation and interaction with protein partners, but whose precise biochemical functions remain largely unknown. The Arabidopsis thaliana YTH domain proteins ECT2, ECT3, and ECT4 accelerate organogenesis through stimulation of cell division in organ primordia. Here, we use ECT2 to reveal molecular underpinnings of this function. We show that stimulation of leaf formation requires the long N-terminal IDR, and we identify two short IDR elements required for ECT2-mediated organogenesis. Of these two, a 19-amino acid region containing a tyrosine-rich motif conserved in both plant and metazoan YTHDF proteins is necessary for binding to the major cytoplasmic poly(A)-binding proteins PAB2, PAB4, and PAB8. Remarkably, overexpression of PAB4 in leaf primordia partially rescues the delayed leaf formation in ect2 ect3 ect4 mutants, suggesting that the ECT2-PAB2/4/8 interaction on target mRNAs of organogenesis-related genes may overcome limiting PAB concentrations in primordial cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , ARN Mensajero/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
5.
Nucleic Acids Res ; 50(3): 1396-1415, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35037064

RESUMEN

Amplification of short interfering RNA (siRNAs) via RNA-dependent RNA polymerases (RdRPs) is of fundamental importance in RNA silencing. Plant microRNA (miRNA) action generally does not involve engagement of RdRPs, in part thanks to a poorly understood activity of the cytoplasmic exosome adaptor SKI2. Here, we show that inactivation of the exosome subunit RRP45B and SKI2 results in similar patterns of miRNA-induced siRNA production. Furthermore, loss of the nuclear exosome adaptor HEN2 leads to secondary siRNA production from miRNA targets largely distinct from those producing siRNAs in ski2. Importantly, mutation of the Release Factor paralogue PELOTA1 required for subunit dissociation of stalled ribosomes causes siRNA production from miRNA targets overlapping with, but distinct from, those affected in ski2 and rrp45b mutants. We also show that in exosome mutants, miRNA targets can be sorted into producers and non-producers of illicit secondary siRNAs based on trigger miRNA levels and miRNA:target affinity rather than on presence of 5'-cleavage fragments. We propose that stalled RNA-Induced Silencing Complex (RISC) and ribosomes, but not mRNA cleavage fragments released from RISC, trigger siRNA production, and that the exosome limits siRNA amplification by reducing RISC dwell time on miRNA target mRNAs while PELOTA1 does so by reducing ribosome stalling.


Asunto(s)
Arabidopsis , Complejo Multienzimático de Ribonucleasas del Exosoma , MicroARNs , Arabidopsis/genética , Arabidopsis/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , MicroARNs/genética , Interferencia de ARN , ARN Bicatenario , ARN Interferente Pequeño/genética , Complejo Silenciador Inducido por ARN/metabolismo
6.
Development ; 147(14)2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32611605

RESUMEN

mRNA methylation at the N6-position of adenosine (m6A) enables multiple layers of post-transcriptional gene control, often via RNA-binding proteins that use a YT521-B homology (YTH) domain for specific m6A recognition. In Arabidopsis, normal leaf morphogenesis and rate of leaf formation require m6A and the YTH-domain proteins ECT2, ECT3 and ECT4. In this study, we show that ect2/ect3 and ect2/ect3/ect4 mutants also exhibit slow root and stem growth, slow flower formation, defective directionality of root growth, and aberrant flower and fruit morphology. In all cases, the m6A-binding site of ECT proteins is required for in vivo function. We also demonstrate that both m6A methyltransferase mutants and ect2/ect3/ect4 exhibit aberrant floral phyllotaxis. Consistent with the delayed organogenesis phenotypes, we observe particularly high expression of ECT2, ECT3 and ECT4 in rapidly dividing cells of organ primordia. Accordingly, ect2/ect3/ect4 mutants exhibit decreased rates of cell division in leaf and vascular primordia. Thus, the m6A-ECT2/ECT3/ECT4 axis is employed as a recurrent module to stimulate plant organogenesis, at least in part by enabling rapid cellular proliferation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Organogénesis de las Plantas/genética , Adenosina/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Sitios de Unión , Proliferación Celular , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Péptidos y Proteínas de Señalización Intracelular/genética , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutagénesis Sitio-Dirigida , Hojas de la Planta/citología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Plant Physiol ; 182(1): 79-96, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31748418

RESUMEN

Posttranscriptional control of gene expression is indispensable for the execution of developmental programs and environmental adaptation. Among the many cellular mechanisms that regulate mRNA fate, covalent nucleotide modification has emerged as a major way of controlling the processing, localization, stability, and translatability of mRNAs. This powerful mechanism is conserved across eukaryotes and controls the cellular events that lead to development and growth. As in other eukaryotes, N 6-methylation of adenosine is the most abundant and best studied mRNA modification in flowering plants. It is essential for embryonic and postembryonic plant development and it affects growth rate and stress responses, including susceptibility to plant RNA viruses. Although the mRNA modification field is young, the intense interest triggered by its involvement in stem cell differentiation and cancer has led to rapid advances in understanding how mRNA modifications control gene expression in mammalian systems. An equivalent effort from plant molecular biologists has been lagging behind, but recent work in Arabidopsis (Arabidopsis thaliana) and other plant species is starting to give insights into how this essential layer of posttranscriptional regulation works in plants, and both similarities and differences with other eukaryotes are emerging. In this Update, we summarize, connect, and evaluate the experimental work that supports our current knowledge of the biochemistry, molecular mechanisms, and biological functions of mRNA modifications in plants. We devote particular attention to N 6-methylation of adenosine and attempt to place the knowledge gained from plant studies within the context of a more general framework derived from studies in other eukaryotes.


Asunto(s)
ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Metilación , ARN Mensajero/genética , ARN de Planta/genética
10.
Plant Cell ; 30(5): 952-967, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29643069

RESUMEN

Methylation of N6-adenosine (m6A) in mRNA is an important posttranscriptional gene regulatory mechanism in eukaryotes. m6A provides a binding site for effector proteins ("readers") that influence pre-mRNA splicing, mRNA degradation, or translational efficiency. YT521-B homology (YTH) domain proteins are important m6A readers with established functions in animals. Plants contain more YTH domain proteins than other eukaryotes, but their biological importance remains unknown. Here, we show that the cytoplasmic Arabidopsis thaliana YTH domain proteins EVOLUTIONARILY CONSERVED C-TERMINAL REGION2/3 (ECT2/3) are required for the correct timing of leaf formation and for normal leaf morphology. These functions depend fully on intact m6A binding sites of ECT2 and ECT3, indicating that they function as m6A readers. Mutation of the close ECT2 homolog, ECT4, enhances the delayed leaf emergence and leaf morphology defects of ect2/ect3 mutants, and all three ECT proteins are expressed at leaf formation sites in the shoot apex of young seedlings and in the division zone of developing leaves. ECT2 and ECT3 are also highly expressed at early stages of trichome development and are required for trichome morphology, as previously reported for m6A itself. Overall, our study establishes the relevance of a cytoplasmic m6A-YTH regulatory module in the timing and execution of plant organogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Unión Proteica
11.
Plant Cell ; 28(7): 1563-80, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27354557

RESUMEN

ARGONAUTE1 (AGO1) mediates posttranscriptional silencing by microRNAs (miRNAs) and short interfering RNAS (siRNAs). AGO1-catalyzed RNA cleavage (slicing) represses miRNA targets, but current models also highlight the roles of slicing in formation of siRNAs and siRNA-AGO1 complexes. miRNA-guided slicing is required for biogenesis of phased, trans-acting siRNAs (tasiRNAs), whose cleaved precursor fragments are converted to double-stranded RNA by RNA-dependent RNA polymerase 6 (RDR6). In addition, unwinding of duplex siRNA bound to AGO1 requires passenger strand cleavage in vitro. In this study, we analyze how mutation of four metal ion-coordinating residues of Arabidopsis thaliana AGO1 affects slicer activity in vitro and siRNA function in vivo. We show that while all four residues are required for slicer activity, they do not contribute equally to catalysis. Moreover, passenger strand cleavage is required for assembly of active AGO1-siRNA complexes in vivo, and many AGO1-bound siRNAs are trimmed in the absence of slicer activity. Remarkably, seedlings defective in AGO1 slicer activity produce abundant siRNAs from tasiRNA loci in vivo. These siRNAs depend on RDR6 and SUPPRESSOR OF GENE SILENCING3, but unlike wild-type tasiRNAs, they are unphased. These results demonstrate that slicing is solely required for phase definition of tasiRNAs, and they strongly support recruitment of RDR6 by AGO1 rather than by cleavage fragments.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , MicroARNs/genética , ARN de Planta/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , ARN Interferente Pequeño/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo
12.
Plant Physiol ; 171(4): 2620-32, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27208258

RESUMEN

MicroRNAs (miRNAs) are key posttranscriptional regulators of gene expression in animals and plants. They guide RNA-induced silencing complexes to complementary target mRNA, thereby mediating mRNA degradation or translational repression. ARGONAUTE (AGO) proteins bind directly to miRNAs and may catalyze cleavage (slicing) of target mRNAs. In animals, miRNA target degradation via slicing occurs only exceptionally, and target mRNA decay is induced via AGO-dependent recruitment of deadenylase complexes. Conversely, plant miRNAs generally direct slicing of their targets, but it is unclear whether slicer-independent mechanisms of target mRNA decay also exist, and, if so, how much they contribute to miRNA-induced mRNA decay. Here, we compare phenotypes and transcript profiles of ago1 null and slicer-deficient mutants in Arabidopsis (Arabidopsis thaliana). We also construct conditional loss-of-function mutants of AGO1 to allow transcript profiling in true leaves. Although phenotypic differences between ago1 null and slicer-deficient mutants can be discerned, the results of both transcript profiling approaches indicate that slicer activity is required for mRNA repression of the vast majority of miRNA targets. A set of genes exhibiting up-regulation specifically in ago1 null, but not in ago1 slicer-deficient mutants was also identified, leaving open the possibility that AGO1 may have functions in gene regulation independent of small RNAs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Argonautas/metabolismo , MicroARNs/metabolismo , Estabilidad del ARN/genética , Alelos , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Dominantes , Integrasas/metabolismo , MicroARNs/genética , Mutación/genética , Fenotipo , Biosíntesis de Proteínas/genética , Plantones/genética , Análisis de Secuencia de ARN , Regulación hacia Arriba/genética
13.
Elife ; 102021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34591013

RESUMEN

Gene regulation via N6-methyladenosine (m6A) in mRNA involves RNA-binding proteins that recognize m6A via a YT521-B homology (YTH) domain. The plant YTH domain proteins ECT2 and ECT3 act genetically redundantly in stimulating cell proliferation during organogenesis, but several fundamental questions regarding their mode of action remain unclear. Here, we use HyperTRIBE (targets of RNA-binding proteins identified by editing) to show that most ECT2 and ECT3 targets overlap, with only a few examples of preferential targeting by either of the two proteins. HyperTRIBE in different mutant backgrounds also provides direct views of redundant, ectopic, and specific target interactions of the two proteins. We also show that contrary to conclusions of previous reports, ECT2 does not accumulate in the nucleus. Accordingly, inactivation of ECT2, ECT3, and their surrogate ECT4 does not change patterns of polyadenylation site choice in ECT2/3 target mRNAs, but does lead to lower steady-state accumulation of target mRNAs. In addition, mRNA and microRNA expression profiles show indications of stress response activation in ect2/ect3/ect4 mutants, likely via indirect effects. Thus, previous suggestions of control of alternative polyadenylation by ECT2 are not supported by evidence, and ECT2 and ECT3 act largely redundantly to regulate target mRNA, including its abundance, in the cytoplasm.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Poliadenilación , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Comunicación Celular , Péptidos y Proteínas de Señalización Intracelular/genética , Unión Proteica , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
14.
Elife ; 102021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34591015

RESUMEN

Specific recognition of N6-methyladenosine (m6A) in mRNA by RNA-binding proteins containing a YT521-B homology (YTH) domain is important in eukaryotic gene regulation. The Arabidopsis YTH domain protein ECT2 is thought to bind to mRNA at URU(m6A)Y sites, yet RR(m6A)CH is the canonical m6A consensus site in all eukaryotes and ECT2 functions require m6A-binding activity. Here, we apply iCLIP (individual nucleotide resolution crosslinking and immunoprecipitation) and HyperTRIBE (targets of RNA-binding proteins identified by editing) to define high-quality target sets of ECT2 and analyze the patterns of enriched sequence motifs around ECT2 crosslink sites. Our analyses show that ECT2 does in fact bind to RR(m6A)CH. Pyrimidine-rich motifs are enriched around, but not at m6A sites, reflecting a preference for N6-adenosine methylation of RRACH/GGAU islands in pyrimidine-rich regions. Such motifs, particularly oligo-U and UNUNU upstream of m6A sites, are also implicated in ECT2 binding via its intrinsically disordered region (IDR). Finally, URUAY-type motifs are enriched at ECT2 crosslink sites, but their distinct properties suggest function as sites of competition between binding of ECT2 and as yet unidentified RNA-binding proteins. Our study provides coherence between genetic and molecular studies of m6A-YTH function in plants and reveals new insight into the mode of RNA recognition by YTH domain-containing proteins.


Genes are strings of genetic code that contain instructions for producing a cell's proteins. Active genes are copied from DNA into molecules called mRNAs, and mRNA molecules are subsequently translated to create new proteins. However, the number of proteins produced by a cell is not only limited by the number of mRNA molecules produced by copying DNA. Cells use a variety of methods to control the stability of mRNA molecules and their translation efficiency to regulate protein production. One of these methods involves adding a chemical tag, a methyl group, onto mRNA while it is being created. These methyl tags can then be used as docking stations by RNA-binding proteins that help regulate protein translation. Most eukaryotic species ­ which include animals, plants and fungi ­ use the same system to add methyl tags to mRNA molecules. One methyl tag in particular, known as m6A, is a well-characterised docking site for a particular type of RNA-binding protein that goes by the name of ECT2 in plants. However, in the flowering plant Arabidopsis thaliana, ECT2 was thought to bind to an mRNA sequence different from the one normally carrying the chemical tag, creating obvious confusion about how the system works in plants. Arribas-Hernández, Rennie et al. investigated this question using advanced large-scale biochemical techniques, and discovered that conventional m6A methyl tags are indeed used by ECT2 in Arabidopsis thaliana. The confusion likely arose because the sequence ECT2 was thought bind is often located in close proximity to the m6A tags, possibly acting as docking stations for proteins that can influence the ability of ECT2 to bind mRNA. Arribas-Hernández, Rennie et al. also uncovered additional mRNA sequences that directly interact with parts of ECT2 previously unknown to participate in mRNA binding. These findings provide new insights into how chemical labels in mRNA control gene activity. They have broad implications that extend beyond plants into other eukaryotic species, including humans. Since this chemical labelling system has a major role in controlling plant growth, these findings could be leveraged in biotechnology applications to improve crop yields and enhance plant-based food production.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Adenosina/metabolismo , Arabidopsis/fisiología , Metilación , Unión Proteica , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo
15.
Methods Mol Biol ; 1932: 295-316, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30701509

RESUMEN

Small RNA-guided endonucleolysis ("slicing") of target mRNA is the signature biochemical activity underlying many RNA silencing phenomena. The catalytic slicer activity resides in Argonaute (AGO) proteins. Here, we present two protocols to detect microRNA-guided slicer activity of AGO1 immunopurified from Arabidopsis tissues. The first uses radioactive, cap-labeled RNA substrates produced by in vitro transcription of RNA fragments corresponding to endogenous target sites flanked by 100-200 nucleotides of target sequence. The second protocol uses similarly designed but shorter (around 50 nt) fluorescently labeled RNA. Advantages and disadvantages of the two setups are also discussed.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Argonautas/genética , Interferencia de ARN/fisiología , ARN de Planta/genética , MicroARNs/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA