Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Genet ; 16(4): e1008600, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32343701

RESUMEN

Upon exposure to environmental stressors, cells transiently arrest the cell cycle while they adapt and restore homeostasis. A challenge for all cells is to distinguish between stress signals and coordinate the appropriate adaptive response with cell cycle arrest. Here we investigate the role of the phosphatase calcineurin (CN) in the stress response and demonstrate that CN activates the Hog1/p38 pathway in both yeast and human cells. In yeast, the MAPK Hog1 is transiently activated in response to several well-studied osmostressors. We show that when a stressor simultaneously activates CN and Hog1, CN disrupts Hog1-stimulated negative feedback to prolong Hog1 activation and the period of cell cycle arrest. Regulation of Hog1 by CN also contributes to inactivation of multiple cell cycle-regulatory transcription factors (TFs) and the decreased expression of cell cycle-regulated genes. CN-dependent downregulation of G1/S genes is dependent upon Hog1 activation, whereas CN inactivates G2/M TFs through a combination of Hog1-dependent and -independent mechanisms. These findings demonstrate that CN and Hog1 act in a coordinated manner to inhibit multiple nodes of the cell cycle-regulatory network. Our results suggest that crosstalk between CN and stress-activated MAPKs helps cells tailor their adaptive responses to specific stressors.


Asunto(s)
Calcineurina/metabolismo , Ciclo Celular , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/fisiología , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulación hacia Abajo , Retroalimentación Fisiológica , Regulación Fúngica de la Expresión Génica , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo
2.
PLoS Genet ; 12(7): e1006216, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27463097

RESUMEN

During mitosis chromosomes are condensed to facilitate their segregation, through a process mediated by the condensin complex. Although several factors that promote maximal condensin activity during mitosis have been identified, the mechanisms that downregulate condensin activity during interphase are largely unknown. Here, we demonstrate that Ycg1, the Cap-G subunit of budding yeast condensin, is cell cycle-regulated with levels peaking in mitosis and decreasing as cells enter G1 phase. This cyclical expression pattern is established by a combination of cell cycle-regulated transcription and constitutive degradation. Interestingly, overexpression of YCG1 and mutations that stabilize Ycg1 each result in delayed cell-cycle entry and an overall proliferation defect. Overexpression of no other condensin subunit impacts the cell cycle, suggesting that Ycg1 is limiting for condensin complex formation. Consistent with this possibility, we find that levels of intact condensin complex are reduced in G1 phase compared to mitosis, and that increased Ycg1 expression leads to increases in both levels of condensin complex and binding to chromatin in G1. Together, these results demonstrate that Ycg1 levels limit condensin function in interphase cells, and suggest that the association of condensin with chromosomes must be reduced following mitosis to enable efficient progression through the cell cycle.


Asunto(s)
Adenosina Trifosfatasas/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Segregación Cromosómica/genética , Proteínas de Unión al ADN/genética , Mitosis/genética , Complejos Multiproteicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Cromatina/genética , Cromosomas/genética , Interfase/genética , Fosforilación , Saccharomyces cerevisiae/genética
3.
EMBO J ; 33(9): 1044-60, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24714560

RESUMEN

To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division.


Asunto(s)
Proteína Quinasa CDC2/fisiología , Ciclo Celular/genética , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/genética , Factores de Transcripción Forkhead/química , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mitosis/genética , Organismos Modificados Genéticamente , Fosforilación , Dominios y Motivos de Interacción de Proteínas/genética , Proteolisis , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
4.
Methods Mol Biol ; 2591: 237-253, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36350552

RESUMEN

A significant hurdle to understanding the functions of deubiquitinases (DUBs) is the identification of their in vivo substrates. Substrate identification can be difficult for two reasons. First, many proteins that are degraded by the ubiquitin-proteasome system are expressed at relatively low levels in the cell, and second, redundancy between DUBs complicates loss of function screening approaches. Here, we describe a systematic overexpression approach that takes advantage of genome-wide resources available in S. cerevisiae to overcome these challenges and identify DUB substrates in cells.


Asunto(s)
Saccharomyces cerevisiae , Ubiquitina , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo
5.
G3 (Bethesda) ; 11(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34586382

RESUMEN

The spindle assembly checkpoint protects the integrity of the genome by ensuring that chromosomes are properly attached to the mitotic spindle before they are segregated during anaphase. Activation of the spindle checkpoint results in inhibition of the Anaphase-Promoting Complex (APC), an E3 ubiquitin ligase that triggers the metaphase-anaphase transition. Here, we show that levels of Ubc1, an E2 enzyme that functions in complex with the APC, modulate the response to spindle checkpoint activation in Saccharomyces cerevisiae. Overexpression of Ubc1 increased resistance to microtubule poisons, whereas Ubc1 shut-off sensitized cells. We also found that Ubc1 levels are regulated by the spindle checkpoint. Checkpoint activation or direct APC inhibition led to a decrease in Ubc1 levels, charging, and half-life. Additionally, stabilization of Ubc1 prevented its down-regulation by the spindle checkpoint and increased resistance to checkpoint-activating drugs. These results suggest that down-regulation of Ubc1 in response to spindle checkpoint signaling is necessary for a robust cell cycle arrest.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Anafase , Ciclosoma-Complejo Promotor de la Anafase/genética , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Puntos de Control de la Fase M del Ciclo Celular , Mitosis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático , Enzimas Ubiquitina-Conjugadoras/genética
6.
Elife ; 82019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31134895

RESUMEN

Intrinsically disordered transcription factor transactivation domains (TADs) function through structural plasticity, adopting ordered conformations when bound to transcriptional co-regulators. Many transcription factors contain a negative regulatory domain (NRD) that suppresses recruitment of transcriptional machinery through autoregulation of the TAD. We report the solution structure of an autoinhibited NRD-TAD complex within FoxM1, a critical activator of mitotic gene expression. We observe that while both the FoxM1 NRD and TAD are primarily intrinsically disordered domains, they associate and adopt a structured conformation. We identify how Plk1 and Cdk kinases cooperate to phosphorylate FoxM1, which releases the TAD into a disordered conformation that then associates with the TAZ2 or KIX domains of the transcriptional co-activator CBP. Our results support a mechanism of FoxM1 regulation in which the TAD undergoes switching between disordered and different ordered structures.


Asunto(s)
Activación Enzimática , Proteína Forkhead Box M1/química , Proteína Forkhead Box M1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fragmentos de Péptidos/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Sialoglicoproteínas/metabolismo , Quinasa Tipo Polo 1
7.
Mol Biol Cell ; 29(23): 2821-2834, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30207830

RESUMEN

Protein degradation during the cell cycle is controlled by the opposing activities of ubiquitin ligases and deubiquitinating enzymes (DUBs). Although the functions of ubiquitin ligases in the cell cycle have been studied extensively, the roles of DUBs in this process are less well understood. Here, we used an overexpression screen to examine the specificities of each of the 21 DUBs in budding yeast for 37 cell cycle-regulated proteins. We find that DUBs up-regulate specific subsets of proteins, with five DUBs regulating the greatest number of targets. Overexpression of Ubp10 had the largest effect, stabilizing 15 targets and delaying cells in mitosis. Importantly, UBP10 deletion decreased the stability of the cell cycle regulator Dbf4, delayed the G1/S transition, and slowed proliferation. Remarkably, deletion of UBP10 together with deletion of four additional DUBs restored proliferation to near-wild-type levels. Among this group, deletion of the proteasome-associated DUB Ubp6 alone reversed the G1/S delay and restored the stability of Ubp10 targets in ubp10Δ cells. Similarly, deletion of UBP14, another DUB that promotes proteasomal activity, rescued the proliferation defect in ubp10Δ cells. Our results suggest that DUBs function through a complex genetic network in which their activities are coordinated to facilitate accurate cell cycle progression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/fisiología , Ciclo Celular , División Celular , Redes Reguladoras de Genes/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomycetales/metabolismo , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/fisiología , Ubiquitinación/fisiología
8.
Mol Biol Cell ; 26(20): 3570-7, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26269584

RESUMEN

Cyclin-dependent kinase (Cdk1) orchestrates progression through the cell cycle by coordinating the activities of cell-cycle regulators. Although phosphatases that oppose Cdk1 are likely to be necessary to establish dynamic phosphorylation, specific phosphatases that target most Cdk1 substrates have not been identified. In budding yeast, the transcription factor Hcm1 activates expression of genes that regulate chromosome segregation and is critical for maintaining genome stability. Previously we found that Hcm1 activity and degradation are stimulated by Cdk1 phosphorylation of distinct clusters of sites. Here we show that, upon exposure to environmental stress, the phosphatase calcineurin inhibits Hcm1 by specifically removing activating phosphorylations and that this regulation is important for cells to delay proliferation when they encounter stress. Our work identifies a mechanism by which proliferative signals from Cdk1 are removed in response to stress and suggests that Hcm1 functions as a rheostat that integrates stimulatory and inhibitory signals to control cell proliferation.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Calcineurina/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proliferación Celular/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Saccharomycetales/citología , Saccharomycetales/metabolismo , Estrés Fisiológico/fisiología , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA