Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(10): e111273, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37021425

RESUMEN

Plant organogenesis requires matching the available metabolic resources to developmental programs. In Arabidopsis, the root system is determined by primary root-derived lateral roots (LRs), and adventitious roots (ARs) formed from non-root organs. Lateral root formation entails the auxin-dependent activation of transcription factors ARF7, ARF19, and LBD16. Adventitious root formation relies on LBD16 activation by auxin and WOX11. The allocation of shoot-derived sugar to the roots influences branching, but how its availability is sensed for LRs formation remains unknown. We combine metabolic profiling with cell-specific interference to show that LRs switch to glycolysis and consume carbohydrates. The target-of-rapamycin (TOR) kinase is activated in the lateral root domain. Interfering with TOR kinase blocks LR initiation while promoting AR formation. The target-of-rapamycin inhibition marginally affects the auxin-induced transcriptional response of the pericycle but attenuates the translation of ARF19, ARF7, and LBD16. TOR inhibition induces WOX11 transcription in these cells, yet no root branching occurs as TOR controls LBD16 translation. TOR is a central gatekeeper for root branching that integrates local auxin-dependent pathways with systemic metabolic signals, modulating the translation of auxin-induced genes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatidilinositol 3-Quinasas/genética
2.
Plant J ; 118(5): 1268-1280, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38349940

RESUMEN

Carbon (C) and nitrogen (N) metabolisms are tightly integrated to allow proper plant growth and development. Photosynthesis is dependent on N invested in chlorophylls, enzymes, and structural components of the photosynthetic machinery, while N uptake and assimilation rely on ATP, reducing equivalents, and C-skeletons provided by photosynthesis. The direct connection between N availability and photosynthetic efficiency allows the synthesis of precursors for all metabolites and building blocks in plants. Thus, the capacity to sense and respond to sudden changes in C and N availability is crucial for plant survival and is mediated by complex yet efficient signaling pathways such as TARGET OF RAPAMYCIN (TOR) and SUCROSE-NON-FERMENTING-1-RELATED PROTEIN KINASE 1 (SnRK1). In this review, we present recent advances in mechanisms involved in sensing C and N status as well as identifying current gaps in our understanding. We finally attempt to provide new perspectives and hypotheses on the interconnection of diverse signaling pathways that will allow us to understand the integration and orchestration of the major players governing the regulation of the CN balance.


Asunto(s)
Carbono , Nitrógeno , Fotosíntesis , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo , Plantas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética
3.
Trends Plant Sci ; 28(12): 1347-1349, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37743166

RESUMEN

Sucrose non-fermenting kinase 1 (SnRK1) has emerged as a pivotal activator of the autophagy pathway; however, the reciprocal influence of autophagy on SnRK1 remains unknown. Yang et al. have recently revealed the existence of a feedback loop connecting autophagy and SnRK1 in terrestrial plants, involving the novel FCS-like zinc finger (FLZ) class of proteins.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Homeostasis/genética , Plantas/genética , Plantas/metabolismo , Dedos de Zinc/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
4.
J R Soc Interface ; 20(208): 20230426, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38016639

RESUMEN

Starch serves as an important carbon storage mechanism for many plant species, facilitating their adaptation to the cyclic variations in the light environment, including day-night cycles as well as seasonal changes in photoperiod. By dynamically adjusting starch accumulation and degradation rates, plants maintain carbon homeostasis, enabling continuous growth under fluctuating environmental conditions. To understand dynamic nature of starch metabolism at the molecular level, it is necessary to integrate empirical knowledge from genetic defects in specific regulatory pathways into the dynamical system of starch metabolism. To achieve this, we evaluated the impact of genetic defects in the circadian clock, sugar sensing and starch degradation pathways using the carbon homeostasis model that encompasses the interplay between these pathways. Through the collection of starch metabolism data from 10 Arabidopsis mutants, we effectively fitted the experimental data to the model. The system-level assessment revealed that genetic defects in both circadian clock components and sugar sensing pathway hindered the appropriate adjustment of the starch degradation rate, particularly under long-day conditions. These findings not only confirmed the previous empirical findings but also provide the novel insights into the role of each gene within the gene regulatory network on the emergence of carbon homeostasis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Ritmo Circadiano/genética , Carbono/metabolismo , Fotoperiodo , Homeostasis , Azúcares/metabolismo , Almidón/metabolismo , Proteínas de Arabidopsis/metabolismo
5.
Curr Opin Plant Biol ; 66: 102196, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35219142

RESUMEN

Plants, as autotrophic organisms, capture light energy to convert carbon dioxide into ATP, NADPH, and sugars, which are essential for the biosynthesis of building blocks, cell proliferation, biomass accumulation, and reproductive fitness. The Target Of Rapamycin (TOR) signalling pathway is a master regulator in sensing energy and nutrients, adapting the metabolic network and cell behaviour in response to environmental resource availability. In the past years, exciting advances in this endeavour have pointed out this pathway's importance in controlling metabolic homeostasis in various biological processes and systems. In this review, we discuss these recent discoveries highlighting the need for a metabolic threshold for the proper function of this kinase complex at the cellular level and across distinct tissues and organs to control growth and development in plants.


Asunto(s)
Transducción de Señal , Serina-Treonina Quinasas TOR , Homeostasis , Plantas/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo
6.
Front Plant Sci ; 12: 637508, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33927734

RESUMEN

The Target of Rapamycin (TOR) kinase pathway integrates energy and nutrient availability into metabolism promoting growth in eukaryotes. The overall higher efficiency on nutrient use translated into faster growth rates in C4 grass plants led to the investigation of differential transcriptional and metabolic responses to short-term chemical TOR complex (TORC) suppression in the model Setaria viridis. In addition to previously described responses to TORC inhibition (i.e., general growth arrest, translational repression, and primary metabolism reprogramming) in Arabidopsis thaliana (C3), the magnitude of changes was smaller in S. viridis, particularly regarding nutrient use efficiency and C allocation and partitioning that promote biosynthetic growth. Besides photosynthetic differences, S. viridis and A. thaliana present several specificities that classify them into distinct lineages, which also contribute to the observed alterations mediated by TOR. Indeed, cell wall metabolism seems to be distinctly regulated according to each cell wall type, as synthesis of non-pectic polysaccharides were affected in S. viridis, whilst assembly and structure in A. thaliana. Our results indicate that the metabolic network needed to achieve faster growth seems to be less stringently controlled by TORC in S. viridis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA