RESUMEN
OBJECTIVE: Cerebral small vessel diseases (cSVDs) are a major cause of stroke and dementia. We used cutting-edge 7T-MRI techniques in patients with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), to establish which aspects of cerebral small vessel function are affected by this monogenic form of cSVD. METHODS: We recruited 23 CADASIL patients (age 51.1 ± 10.1 years, 52% women) and 13 age- and sex-matched controls (46.1 ± 12.6, 46% women). Small vessel function measures included: basal ganglia and centrum semiovale perforating artery blood flow velocity and pulsatility, vascular reactivity to a visual stimulus in the occipital cortex and reactivity to hypercapnia in the cortex, subcortical gray matter, white matter, and white matter hyperintensities. RESULTS: Compared with controls, CADASIL patients showed lower blood flow velocity and higher pulsatility index within perforating arteries of the centrum semiovale (mean difference - 0.09 cm/s, p = 0.03 and 0.20, p = 0.009) and basal ganglia (mean difference - 0.98 cm/s, p = 0.003 and 0.17, p = 0.06). Small vessel reactivity to a short visual stimulus was decreased (blood-oxygen-level dependent [BOLD] mean difference -0.21%, p = 0.04) in patients, while reactivity to hypercapnia was preserved in the cortex, subcortical gray matter, and normal appearing white matter. Among patients, reactivity to hypercapnia was decreased in white matter hyperintensities compared to normal appearing white matter (BOLD mean difference -0.29%, p = 0.02). INTERPRETATION: Multiple aspects of cerebral small vessel function on 7T-MRI were abnormal in CADASIL patients, indicative of increased arteriolar stiffness and regional abnormalities in reactivity, locally also in relation to white matter injury. These observations provide novel markers of cSVD for mechanistic and intervention studies. ANN NEUROL 2023;93:29-39.
Asunto(s)
CADASIL , Enfermedades de los Pequeños Vasos Cerebrales , Humanos , Femenino , Adulto , Persona de Mediana Edad , Masculino , CADASIL/diagnóstico por imagen , Hipercapnia/diagnóstico por imagen , Imagen por Resonancia Magnética , Infarto Cerebral , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagenRESUMEN
INTRODUCTION: Cerebral perforating arteries provide blood supply to the deep regions of the brain. Recently, it became possible to measure blood flow velocity and pulsatility in these small arteries. It is unknown if vascular risk factors are related to these measures. METHODS: We measured perforating artery flow with 2D phase contrast 7 Tesla MRI at the level of the centrum semiovale (CSO) and the basal ganglia (BG) in seventy participants from the Heart Brain Connection study with carotid occlusive disease (COD), vascular cognitive impairment (VCI), or no actual cerebrovascular disease. Vascular risk factors included hypertension, diabetes, hyperlipidemia and smoking. RESULTS: No consistent relations were found between any of the vascular risk factors and either flow velocity or flow pulsatility, although there was a relation between lower diastolic blood pressure and higher pulse pressure and higher cerebral perforator pulsatility (p=0,045 and p=0,044, respectively) at the BG level. Results were similar in stratified analyses for patients with and without a history of cardiovascular disease, or only COD or VCI. CONCLUSION: We conclude that, cross-sectionally, cerebral perforating artery flow velocity and pulsatility are largely independent of the presence of common vascular risk factors in a population with a mixed vascular burden.
RESUMEN
BACKGROUND: Damping of heartbeat-induced pressure pulsations occurs in large arteries such as the aorta and extends to the small arteries and microcirculation. Since recently, 7 T MRI enables investigation of damping in the small cerebral arteries. PURPOSE: To investigate flow pulsatility damping between the first segment of the middle cerebral artery (M1) and the small perforating arteries using magnetic resonance imaging. STUDY TYPE: Retrospective. SUBJECTS: Thirty-eight participants (45% female) aged above 50 without history of heart failure, carotid occlusive disease, or cognitive impairment. FIELD STRENGTH/SEQUENCE: 3 T gradient echo (GE) T1-weighted images, spin-echo fluid-attenuated inversion recovery images, GE two-dimensional (2D) phase-contrast, and GE cine steady-state free precession images were acquired. At 7 T, T1-weighted images, GE quantitative-flow, and GE 2D phase-contrast images were acquired. ASSESSMENT: Velocity pulsatilities of the M1 and perforating arteries in the basal ganglia (BG) and semi-oval center (CSO) were measured. We used the damping index between the M1 and perforating arteries as a damping indicator (velocity pulsatilityM1 /velocity pulsatilityCSO/BG ). Left ventricular stroke volume (LVSV), mean arterial pressure (MAP), pulse pressure (PP), and aortic pulse wave velocity (PWV) were correlated with velocity pulsatility in the M1 and in perforating arteries, and with the damping index of the CSO and BG. STATISTICAL TESTS: Correlations of LVSV, MAP, PP, and PWV with velocity pulsatility in the M1 and small perforating arteries, and correlations with the damping indices were evaluated with linear regression analyses. RESULTS: PP and PWV were significantly positively correlated to M1 velocity pulsatility. PWV was significantly negatively correlated to CSO velocity pulsatility, and PP was unrelated to CSO velocity pulsatility (P = 0.28). PP and PWV were uncorrelated to BG velocity pulsatility (P = 0.25; P = 0.68). PWV and PP were significantly positively correlated with the CSO damping index. DATA CONCLUSION: Our study demonstrated a dynamic damping of velocity pulsatility between the M1 and small cerebral perforating arteries in relation to proximal stress. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 1.
Asunto(s)
Análisis de la Onda del Pulso , Rigidez Vascular , Anciano , Velocidad del Flujo Sanguíneo/fisiología , Arterias Cerebrales , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Estudios Retrospectivos , Rigidez Vascular/fisiologíaRESUMEN
BACKGROUND: Blood flow velocity and pulsatility of small cerebral perforating arteries can be measured using 7T quantitative 2D phase contrast (PC) MRI. However, ghosting artifacts arising from subject movement and pulsating large arteries cause false positives when applying a previously published perforator detection method. PURPOSE: To develop a robust, automated method to exclude perforators located in ghosting artifacts. STUDY TYPE: Retrospective. SUBJECTS: Fifteen patients with vascular cognitive impairment or carotid occlusive disease and 10 healthy controls. FIELD STRENGTH/SEQUENCE: 7T/cardiac-gated 2D PC MRI. ASSESSMENT: Perforators were automatically excluded from ghosting regions, which were defined as bands in the phase-encoding direction of large arteries. As reference, perforators were manually excluded by two raters (T.A., J.J.M.Z.), based on perforator location with respect to visible ghosting artifacts. The performance of both censoring methods was assessed for the number of (Nincluded ), mean velocity (Vmean ), and pulsatility index (PI) of the included perforators. STATISTICAL TESTS: For within-method comparisons, inter- and intrarater reliability were assessed for the manual method, and test-retest reliability was assessed for both methods from repeated 2D PC scans (without repositioning). Intraclass correlation coefficients (ICCs) and their 95% confidence intervals (CIs) were determined for Nincluded , Vmean , and PI for all within-method comparisons. The ICC to compare between the two methods was determined with the use of both (test-retest) scans using a multilevel nonlinear mixed model. RESULTS: The automated censoring method showed a moderate to good ICC (95% CI) vs. manual censoring for Nincluded (0.73 [0.58-0.87]) and Vmean (0.90 [0.84-0.96]), and a moderate ICC for PI (0.57 [0.37-0.76]). The test-retest reliability of the manual censoring method was considerably lower than the interrater and intrarater reliability, indicating that scanner noise dominates the uncertainty of the analysis. DATA CONCLUSION: The proposed automated censoring method can reliably exclude small perforators affected by ghosting artifacts. LEVEL OF EVIDENCE: 3. TECHNICAL EFFICACY STAGE: 1.
Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Arterias Cerebrales , Humanos , Reproducibilidad de los Resultados , Estudios RetrospectivosRESUMEN
BACKGROUND: Proton therapy is becoming increasingly available, so it is important to apply objective and individualized patient selection to identify those who are expected to benefit most from proton therapy compared to conventional intensity modulated radiation therapy (IMRT). Comparative treatment planning using normal tissue complication probability (NTCP) evaluation has recently been proposed. This work investigates the impact of NTCP model and dose uncertainties on model-based patient selection. MATERIAL AND METHODS: We used IMRT and intensity modulated proton therapy (IMPT) treatment plans of 78 oropharyngeal cancer patients, which were generated based on automated treatment planning and evaluated based on three published NTCP models. A reduction in NTCP of more than a certain threshold (e.g. 10% lower NTCP) leads to patient selection for IMPT, referred to as 'nominal' selection. To simulate the effect of uncertainties in NTCP-model coefficients (based on reported confidence intervals) and planned doses on the accuracy of model-based patient selection, the Monte Carlo method was used to sample NTCP-model coefficients and doses from a probability distribution centered at their nominal values. Patient selection accuracy within a certain sample was defined as the fraction of patients which had similar selection in both the 'nominal' and 'sampled' scenario. RESULTS: For all three NTCP models, the median patient selection accuracy was found to be above 70% when only NTCP-model uncertainty was considered. Selection accuracy decreased with increasing uncertainty resulting from differences between planned and delivered dose. In case of excessive dose uncertainty, selection accuracy decreased to 60%. CONCLUSION: Model and dose uncertainty highly influence the accuracy of model-based patient selection for proton therapy. A reduction of NTCP-model uncertainty is necessary to reach more accurate model-based patient selection.
Asunto(s)
Método de Montecarlo , Órganos en Riesgo/efectos de la radiación , Neoplasias Orofaríngeas/radioterapia , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Anciano , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Masculino , IncertidumbreRESUMEN
Enlarged perivascular spaces (EPVS) are common in cerebral small vessel disease (CSVD) and have been identified as a marker of dysfunctional brain clearance. However, it remains unknown if the enlargement occurs predominantly around arteries or veins. We combined in vivo ultra-high-resolution MRI and histopathology to investigate the spatial relationship of veins and arteries with EPVS within the basal ganglia (BG). Furthermore, we assessed the relationship between the EPVS and measures of blood-flow (blood-flow velocity, pulsatility index) in the small arteries of the BG. Twenty-four healthy controls, twelve non-CAA CSVD patients, and five probable CAA patients underwent a 3 tesla [T] and 7T MRI-scan, and EPVS, arteries, and veins within the BG were manually segmented. Furthermore, the scans were co-registered. Six autopsy-cases were also assessed. In the BG, EPVS were significantly closer to and overlapped more frequently with arteries than with veins. Histological analysis showed a higher proportion of BG EPVS surrounding arteries than veins. Finally, the pulsatility index of BG arteries correlated with EPVS volume. Our results are in line with previous works and establish a pathophysiological relationship between arteries and EPVS, contributing to elucidating perivascular clearance routes in the human brain.
RESUMEN
BACKGROUND AND OBJECTIVES: Cerebral small vessel disease (cSVD) is a major cause of stroke and dementia, but little is known about disease mechanisms at the level of the small vessels. 7T-MRI allows assessing small vessel function in vivo in different vessel populations. We hypothesized that multiple aspects of small vessel function are altered in patients with cSVD and that these abnormalities relate to disease burden. METHODS: Patients and controls participated in a prospective observational cohort study, the ZOOM@SVDs study. Small vessel function measures on 7T-MRI included perforating artery blood flow velocity and pulsatility index in the basal ganglia and centrum semiovale, vascular reactivity to visual stimulation in the occipital cortex, and reactivity to hypercapnia in the gray and white matter. Lesion load on 3T-MRI and cognitive function were used to assess disease burden. RESULTS: Forty-six patients with sporadic cSVD (mean age ± SD 65 ± 9 years) and 22 matched controls (64 ± 7 years) participated in the ZOOM@SVDs study. Compared with controls, patients had increased pulsatility index (mean difference 0.09, p = 0.01) but similar blood flow velocity in basal ganglia perforating arteries and similar flow velocity and pulsatility index in centrum semiovale perforating arteries. The duration of the vascular response to brief visual stimulation in the occipital cortex was shorter in patients than in controls (mean difference -0.63 seconds, p = 0.02), whereas reactivity to hypercapnia was not significantly affected in the gray and total white matter. Among patients, reactivity to hypercapnia was lower in white matter hyperintensities compared with normal-appearing white matter (blood-oxygen-level dependent mean difference 0.35%, p = 0.001). Blood flow velocity and pulsatility index in basal ganglia perforating arteries and reactivity to brief visual stimulation correlated with disease burden. DISCUSSION: We observed abnormalities in several aspects of small vessel function in patients with cSVD indicative of regionally increased arteriolar stiffness and decreased reactivity. Worse small vessel function also correlated with increased disease burden. These functional measures provide new mechanistic markers of sporadic cSVD.
Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Hipercapnia , Humanos , Arterias , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Prospectivos , Persona de Mediana Edad , AncianoRESUMEN
Patients with carotid occlusive disease express altered hemodynamics in the post-occlusive vasculature and lesions commonly attributed to cerebral small vessel disease (SVD). We addressed the question if cerebral perforating artery flow measures, using a novel 7T MRI technique, are altered and related to SVD lesion burden in patients with carotid occlusive disease. 21 patients were included with a uni- (18) or bilateral (3) carotid occlusion (64±7 years) and 19 controls (65±10 years). Mean flow velocity and pulsatility in the perforating arteries in the semi-oval center (CSO) and basal ganglia (BG), measured with a 2D phase contrast 7T MRI sequence, were compared between patients and controls, and between hemispheres in patients with unilateral carotid occlusive disease. In patients, relations were assessed between perforating artery flow measures and SVD burden score and white matter hyperintensity (WMH) volume. CSO perforating artery flow velocity was lower in patients than controls, albeit non-significant (mean difference [95% confidence interval] 0.08 cm/s [0.00-0.16]; p = 0.053), but pulsatility was similar (0.07 [-0.04-0.18]; p = 0.23). BG flow velocity and pulsatility did not differ between patients and controls (velocity = 0.28 cm/s [-0.32-0.88]; p = 0.34; pulsatility = 0.00 [-0.10-0.11]; p = 0.97). Patients with unilateral carotid occlusive disease showed no significant interhemispheric flow differences. Though non-significant, within patients lower CSO (p = 0.06) and BG (p = 0.11) flow velocity related to larger WMH volume. Our findings suggest that carotid occlusive disease may be associated with abnormal cerebral perforating artery flow and that this relates to SVD lesion burden in these patients, although our observations need corroboration in larger study populations.
RESUMEN
Cerebral perforating artery flow velocity and pulsatility can be measured using 7 tesla (T) MRI. Enabling these flow metrics on more widely available 3T systems would make them more employable. It is currently unknown whether these measurements can be performed at 3T MRI due to the lower signal-to-noise ratio (SNR). Therefore, the aim of this study is to investigate if flow velocity and pulsatility in the perforating arteries of the basal ganglia (BG) can be measured at 3T MRI and assess the agreement with 7T MRI measurements as reference. Twenty-nine subjects were included, of which 14 patients with aortic coarctation [median age 29 years (21-72)] and 15 controls [median age 27 years (22-64)]. Using a cardiac-gated 2D phase-contrast MRI sequence BG perforating arteries were imaged at 3T and 7T MRI and perforating artery density (N density , #/cm2), flow velocity (V mean , cm/s) and pulsatility index (PI) were determined. Agreement between scanner modalities was assessed using correlation and difference plots with linear regression. A p-value ≤ 0.05 indicated statistical significance. It was shown that perforating artery flow velocity and pulsatility can be measured at 3T MRI (N density = 0.21 ± 0.11; V mean = 6.04 ± 1.27; PI = 0.49 ± 0.19), although values differed from 7T MRI measurements (N density = 0.95 ± 0.21; V mean = 3.89 ± 0.56; PI = 0.28 ± 0.08). The number of detected arteries was lower at 3T (5 ± 3) than 7T MRI (24 ± 6), indicating that 3T MRI is on average a factor 4.8 less sensitive to detect cerebral perforating arteries. Comparison with 7T MRI as reference showed some agreement in N density , but little to no agreement for V mean and PI. Equalizing the modalities' sensitivity by comparing the detected arteries on 7T MRI with the highest velocity with all vessels detected on 3T MRI, showed some improvement in agreement for PI, but not for V mean . This study shows that it is possible to measure cerebral perforating artery flow velocity and pulsatility at 3T MRI, although an approximately fivefold sample size is needed at 3T relative to 7T MRI for a given effect size, and the measurements should be performed with equal scanner field strength and protocol.
RESUMEN
Background: Cerebral small vessel diseases (SVDs) are a major cause of stroke and dementia. Yet, specific treatment strategies are lacking in part because of a limited understanding of the underlying disease processes. There is therefore an urgent need to study SVDs at their core, the small vessels themselves. Objective: This paper presents the rationale and design of the ZOOM@SVDs study, which aims to establish measures of cerebral small vessel dysfunction on 7T MRI as novel disease markers of SVDs. Methods: ZOOM@SVDs is a prospective observational cohort study with two years follow-up. ZOOM@SVDs recruits participants with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL, N = 20), sporadic SVDs (N = 60), and healthy controls (N = 40). Participants undergo 7T brain MRI to assess different aspects of small vessel function including small vessel reactivity, cerebral perforating artery flow, and pulsatility. Extensive work-up at baseline and follow-up further includes clinical and neuropsychological assessment as well as 3T brain MRI to assess conventional SVD imaging markers. Measures of small vessel dysfunction are compared between patients and controls, and related to the severity of clinical and conventional MRI manifestations of SVDs. Discussion: ZOOM@SVDs will deliver novel markers of cerebral small vessel function in patients with monogenic and sporadic forms of SVDs, and establish their relation with disease burden and progression. These small vessel markers can support etiological studies in SVDs and may serve as surrogate outcome measures in future clinical trials to show target engagement of drugs directed at the small vessels.
RESUMEN
Background: Sporadic cerebral small vessel disease (SVD) and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) share clinical and neuroimaging features and possibly vascular dysfunction(s). However few studies have included both conditions, assessed more than one vascular dysfunction simultaneously, or included more than one centre. The INVESTIGATE-SVDs study will assess several cerebrovascular dysfunctions with MRI in participants with sporadic SVD or CADASIL at three European centres. Methods: We will recruit participants with sporadic SVDs (ischaemic stroke or vascular cognitive impairment) and CADASIL in Edinburgh, Maastricht and Munich. We will perform detailed clinical and neuropsychological phenotyping of the participants, and neuroimaging including structural MRI, cerebrovascular reactivity MRI (CVR: using carbon dioxide challenge), phase contrast MRI (arterial, venous and CSF flow and pulsatility), dynamic contrast-enhanced MRI (blood brain barrier (BBB) leakage) and multishell diffusion imaging. Participants will measure their blood pressure (BP) and its variability over seven days using a telemetric device. Discussion: INVESTIGATE-SVDs will assess the relationships of BBB integrity, CVR, pulsatility and CSF flow in sporadic SVD and CADASIL using a multisite, multimodal MRI protocol. We aim to establish associations between these measures of vascular function, risk factors particularly BP and its variability, and brain parenchymal lesions in these two SVD phenotypes. Additionally we will test feasibility of complex multisite MRI, provide reliable intermediary outcome measures and sample size estimates for future trials.
RESUMEN
BACKGROUND AND PURPOSE: The impact of treatment accuracy on NTCP-based patient selection for proton therapy is currently unknown. This study investigates this impact for oropharyngeal cancer patients. MATERIALS AND METHODS: Data of 78 patients was used to automatically generate treatment plans for a simultaneously integrated boost prescribing 70â¯GyRBE/54.25â¯GyRBE in 35 fractions. IMRT treatment plans were generated with three different margins; intensity modulated proton therapy (IMPT) plans for five different setup and range robustness settings. Four NTCP models were evaluated. Patients were selected for proton therapy if NTCP reduction was ≥10% or ≥5% for grade II or III complications, respectively. RESULTS: The degree of robustness had little impact on patient selection for tube feeding dependence, while the margin had. For other complications the impact of the robustness setting was noticeably higher. For high-precision IMRT (3â¯mm margin) and high-precision IMPT (3â¯mm setup/3% range error), most patients were selected for proton therapy based on problems swallowing solid food (51.3%) followed by tube feeding dependence (37.2%), decreased parotid flow (29.5%), and patient-rated xerostomia (7.7%). CONCLUSIONS: Treatment accuracy has a significant impact on the number of patients selected for proton therapy. Therefore, it cannot be ignored in estimating the number of patients for proton therapy.