Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36012473

RESUMEN

Skeletal-related disorders such as arthritis, bone cancer, osteosarcoma, and osteoarthritis are among the most common reasons for mortality in humans at present. Nanostructured scaffolds have been discovered to be more efficient for bone regeneration than macro/micro-sized scaffolds because they sufficiently permit cell adhesion, proliferation, and chemical transformation. Nanofibrous scaffolds mimicking artificial extracellular matrices provide a natural environment for tissue regeneration owing to their large surface area, high porosity, and appreciable drug loading capacity. Here, we review recent progress and possible future prospective electrospun nanofibrous scaffolds for bone tissue engineering. Electrospun nanofibrous scaffolds have demonstrated promising potential in bone tissue regeneration using a variety of nanomaterials. This review focused on the crucial role of electrospun nanofibrous scaffolds in biological applications, including drug/growth factor delivery to bone tissue regeneration. Natural and synthetic polymeric nanofibrous scaffolds are extensively inspected to regenerate bone tissue. We focused mainly on the significant impact of nanofibrous composite scaffolds on cell adhesion and function, and different composites of organic/inorganic nanoparticles with nanofiber scaffolds. This analysis provides an overview of nanofibrous scaffold-based bone regeneration strategies; however, the same concepts can be applied to other organ and tissue regeneration tactics.


Asunto(s)
Nanofibras , Ingeniería de Tejidos , Biomimética , Huesos , Humanos , Medicina Regenerativa , Ingeniería de Tejidos/métodos , Andamios del Tejido
2.
Mater Today Bio ; 26: 101088, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38779556

RESUMEN

Osteogenic-osteoclast coupling processes play a crucial role in bone regeneration. Recently, strategies that focus on multi-functionalized implant surfaces to enhance the healing of bone defects through the synergistic regulation of osteogenesis and osteoclastogenesis is still a challenging task in the field of bone tissue engineering. The aim of this study was to create a dual-drug release-based core-shell nanofibers with the intent of achieving a time-controlled release to facilitate bone regeneration. We fabricated core-shell P/PCL nanofibers using coaxial electrospinning, where alendronate (ALN) was incorporated into the core layer and hydroxyapatite (HA) into shell. The surface of the nanofiber construct was further modified with mussel-derived polydopamine (PDA) to induce hydrophilicity and enhance cell interactions. Surface characterizations confirmed the successful synthesis of PDA@PHA/PCL-ALN nanofibers endowed with excellent mechanical strength (20.02 ± 0.13 MPa) and hydrophilicity (22.56°), as well as the sustained sequential release of ALN and Ca ions. In vitro experiments demonstrated that PDA-functionalized core-shell PHA/PCL-ALN scaffolds possessed excellent cytocompatibility, enhanced cell adhesion and proliferation, alkaline phosphatase activity and osteogenesis-related genes. In addition to osteogenesis, the engineered scaffolds also significantly reduced osteoclastogenesis, such as tartrate-resistant acid phosphatase activity and osteoclastogenesis-related gene expression. After 12-week of implantation, it was observed that PDA@PHA/PCL-ALN nanofiber scaffolds, in a rat cranial defect model, significantly promoted bone repair and regeneration. Microcomputed tomography, histological examination, and immunohistochemical analysis collectively demonstrated that the PDA-functionalized core-shell PHA/PCL-ALN scaffolds exhibited exceptional osteogenesis-inducing and osteoclastogenesis-inhibiting effects. Finally, it may be concluded from our results that the bio-inspired surface-functionalized multifunctional, biomimetic and controlled release core-shell nanofiber provides a promising strategy to facilitate bone healing.

3.
Int J Pharm ; 653: 123872, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38336178

RESUMEN

Cardiotoxicity (CT) is a severe condition that negatively impacts heart function. ß-sitosterol (BS) is a group of phytosterols and known for various pharmacological benefits, such as managing diabetes, cardiac protection, and neuroprotection. This study aims to develop niosomes (NS) containing BS, utilizing cholesterol as the lipid and Tween 80 as the stabilizer. The research focuses on designing and evaluating both conventional BS-NS and hyaluronic acid (HA) modified NS (BS-HA-NS) to enhance the specificity and efficacy of BS within cardiac tissue. The resulting niosomal formulation was spherical, with a size of about 158.51 ± 0.57 nm, an entrapment efficiency of 93.56 ± 1.48 %, and a drug loading of 8.07 ± 1.62 %. To evaluate cytotoxicity on H9c2 heart cells, the MTT assay was used. The cellular uptake of BS-NS and BS-HA-NS was confirmed by confocal microscopy on H9c2 cardiac cells. Administering BS-NS and BS-HA-NS intravenously at a dose of 10 mg/kg showed the ability to significantly decrease the levels of cardiac troponin-I (cTn-I), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and lipid peroxidation (MDA). Tissue histopathology indicated a substantial potential for repairing cardiac tissue after treatment with BS-NS and BS-HA-NS and strong cardioprotection against ISO induced myocardial tissue damages. Thus, enhancing BS's therapeutic effectiveness through niosome surface modification holds promise for mitigating cardiac damage resulting from CT.


Asunto(s)
Cardiotoxicidad , Infarto del Miocardio , Sitoesteroles , Ratas , Animales , Isoproterenol/metabolismo , Isoproterenol/farmacología , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/prevención & control , Liposomas/farmacología , Cardiotónicos/farmacología , Infarto del Miocardio/tratamiento farmacológico , Miocardio/patología , Antioxidantes/farmacología , Estrés Oxidativo
4.
Int J Nanomedicine ; 19: 5397-5418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863647

RESUMEN

Background: The healing of burn wounds is a complicated physiological process that involves several stages, including haemostasis, inflammation, proliferation, and remodelling to rebuild the skin and subcutaneous tissue integrity. Recent advancements in nanomaterials, especially nanofibers, have opened a new way for efficient healing of wounds due to burning or other injuries. Methods: This study aims to develop and characterize collagen-decorated, bilayered electrospun nanofibrous mats composed of PVP and PVA loaded with Resveratrol (RSV) and Ampicillin (AMP) to accelerate burn wound healing and tissue repair. Results: Nanofibers with smooth surfaces and web-like structures with diameters ranging from 200 to 400 nm were successfully produced by electrospinning. These fibres exhibited excellent in vitro properties, including the ability to absorb wound exudates and undergo biodegradation over a two-week period. Additionally, these nanofibers demonstrated sustained and controlled release of encapsulated Resveratrol (RSV) and Ampicillin (AMP) through in vitro release studies. The zone of inhibition (ZOI) of PVP-PVA-RSV-AMP nanofibers against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was found 31±0.09 mm and 12±0.03, respectively, which was significantly higher as compared to positive control. Similarly, the biofilm study confirmed the significant reduction in the formation of biofilms in nanofiber-treated group against both S. aureus and E. coli. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis proved the encapsulation of RSV and AMP successfully into nanofibers and their compatibility. Haemolysis assay (%) showed no significant haemolysis (less than 5%) in nanofiber-treated groups, confirmed their cytocompatibility with red blood cells (RBCs). Cell viability assay and cell adhesion on HaCaT cells showed increased cell proliferation, indicating its biocompatibility as well as non-toxic properties. Results of the in-vivo experiments on a burn wound model demonstrated potential burn wound healing in rats confirmed by H&E-stained images and also improved the collagen synthesis in nanofibers-treated groups evidenced by Masson-trichrome staining. The ELISA assay clearly indicated the efficient downregulation of TNF-alpha and IL-6 inflammatory biomarkers after treatment with nanofibers on day 10. Conclusion: The RSV and AMP-loaded nanofiber mats, developed in this study, expedite burn wound healing through their multifaceted approach.


Asunto(s)
Ampicilina , Quemaduras , Colágeno , Escherichia coli , Nanofibras , Alcohol Polivinílico , Povidona , Resveratrol , Staphylococcus aureus , Cicatrización de Heridas , Resveratrol/farmacología , Resveratrol/química , Resveratrol/administración & dosificación , Resveratrol/farmacocinética , Nanofibras/química , Quemaduras/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Animales , Colágeno/química , Povidona/química , Staphylococcus aureus/efectos de los fármacos , Alcohol Polivinílico/química , Humanos , Escherichia coli/efectos de los fármacos , Ampicilina/farmacología , Ampicilina/química , Ampicilina/farmacocinética , Ampicilina/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Ratas , Biopelículas/efectos de los fármacos , Masculino
5.
Int J Pharm ; 642: 123160, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37379892

RESUMEN

Current anticancer drug research includes tumor-targeted administration as a critical component because it is the best strategy to boost efficacy and decrease toxicity. Low drug concentration in cancer cells, nonspecific distribution, rapid clearance, multiple drug resistance, severe side effects, and other factors contribute to the disappointing results of traditional chemotherapy. As an innovative technique of treatments for hepatocellular carcinoma (HCC) in recent years, nanocarrier-mediated targeted drug delivery systems can overcome the aforesaid limitations via enhanced permeability and retention effect (EPR) and active targeting. Epidermal growth factor receptor (EGFR) inhibitor Gefitinib (Gefi) has dramatic effects on hepatocellular carcinoma. Herein, we developed and assessed an αvß3 integrin receptor targeted c(RGDfK) surface modified liposomes for better targeting selectivity and therapeutic efficacy of Gefi on HCC cells. The conventional and modified Gefi loaded liposomes, i.e., denoted as Gefi-L and Gefi-c(RGDfK)-L, respectively, were prepared through the ethanol injection method and optimized via Box Behnken design (BBD). The FTIR and 1H NMR spectroscopy verified that the c(RGDfK) pentapeptides had formed an amide bond with the liposome surface. In addition, the particle size, Polydispersity index, zeta potential, encapsulation efficiency, and in-vitro Gefi release of the Gefi-L and Gefi-c(RGDfK)-L were measured and analyzed. As indicated by the MTT assay on HepG2 cells, Gefi-c(RGDfK)-L displayed considerably higher cytotoxicity than Gefi-L or Gefi alone. Throughout the incubation period, HepG2 cells took up significantly more Gefi-c(RGDfK)-L than Gefi-L. According to the in vivo biodistribution analysis, Gefi-c(RGDfK)-L accumulated more strongly at the tumor site than Gefi-L and free Gefi. Furthermore, HCC-bearing rats treated with Gefi-c(RGDfK)-L showed a substantial drop in liver marker enzymes (alanine transaminase, alkaline phosphatase, aspartate transaminase, and total bilirubin levels) compared to the disease control group. Gefi-c(RGDfK)-L suppresses tumour growth more effectively than Gefi-L and free Gefi, according to an in vivo analysis of their anticancer activities. Thus, c(RGDfK)-surface modified liposomes, i.e., Gefi-c(RGDfK)-L may serve as an efficient carrier for the targeted delivery of anticancer drugs.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratas , Animales , Liposomas/química , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Distribución Tisular , Sistemas de Liberación de Medicamentos/métodos , Gefitinib , Línea Celular Tumoral
6.
Int J Pharm ; 638: 122918, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37030638

RESUMEN

Electrospun nanofibers scaffolds show promising potential in wound healing applications. This work aims to fabricate nanofibrous wound dressing as a novel approach for a topical drug delivery system. Herein, the electrospinning technique is used to design and fabricate bioabsorbable nanofibrous scaffolds of Polyvinyl alcohol/gelatin/poly (lactic-co-glycolic acid) enriched with thrombin (TMB) as hemostatic agent and vancomycin (VCM) as anti-bacterial agent for a multifunctional platform to control excessive blood loss, inhibit bacterial growth and enhance wound healing. SEM, FTIR, XRD, in vitro drug release, antimicrobial studies, biofilm, cell viability assay, and in vivo study in a rat model were used to assess nanofiber's structural, mechanical, and biological aspects. SEM images confirms the diameter of nanofibers which falls within the range from 150 to 300 nm for all the batches. Excellent swelling index data makes it suitable to absorb wound exudates. In-vitro drug release data shows sustained release behavior of nanofiber. Nanofibers scaffolds showed biomimetic behavior and excellent biocompatibility. Moreover, scaffolds exhibited excellent antimicrobial and biofilm activity against Staphylococcus aureus. Nanofibrous scaffolds showed less bleeding time, rapid blood coagulation, and excellent wound closure in a rat model. ELISA study demonstrated the decreasing level of inflammatory markers, such as TNF-α, IL1ß, and IL-6, making formulation promising for hemostatic wound healing applications. Finally, the study concludes that nanofibrous scaffolds loaded with TMB and VCM have promising potential as a dressing material for hemostatic wound healing applications.


Asunto(s)
Antiinfecciosos , Hemostáticos , Nanofibras , Ratas , Animales , Antibacterianos , Gelatina/química , Nanofibras/química , Alcohol Polivinílico/química , Hemostáticos/farmacología , Glicoles , Cicatrización de Heridas
7.
Front Bioeng Biotechnol ; 11: 1302594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026845

RESUMEN

Electrospun composite nanofiber scaffolds are well known for their bone and tissue regeneration applications. This research is focused on the development of PVP and PVA nanofiber composite scaffolds enriched with hydroxyapatite (HA) nanoparticles and alendronate (ALN) using the electrospinning technique. The developed nanofiber scaffolds were investigated for their physicochemical as well as bone regeneration potential. The results obtained from particle size, zeta potential, SEM and EDX analysis of HA nanoparticles confirmed their successful fabrication. Further, SEM analysis verified nanofiber's diameters within 200-250 nm, while EDX analysis confirmed the successful incorporation of HA and ALN into the scaffolds. XRD and TGA analysis revealed the amorphous and thermally stable nature of the nanofiber composite scaffolds. Contact angle, FTIR analysis, Swelling and biodegradability studies revealed the hydrophilicity, chemical compatibility, suitable water uptake capacity and increased in-vitro degradation making it appropriate for tissue regeneration. The addition of HA into nanofiber scaffolds enhanced the physiochemical properties. Additionally, hemolysis cell viability, cell adhesion and proliferation by SEM as well as confocal microscopy and live/dead assay results demonstrated the non-toxic and biocompatibility behavior of nanofiber scaffolds. Alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) assays demonstrated osteoblast promotion and osteoclast inhibition, respectively. These findings suggest that developed HA and ALN-loaded PVP/PVA-ALN-HA nanofiber composite scaffolds hold significant promise for bone regeneration applications.

8.
Front Bioeng Biotechnol ; 11: 1288539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026878

RESUMEN

Electrospinning is a versatile method for fabrication of précised nanofibrous materials for various biomedical application including tissue engineering and drug delivery. This research is aimed to fabricate the PVP/PVA nanofiber scaffold by novel electrospinning technique and to investigate the impact of process parameters (flow rate, voltage and distance) and polymer concentration/solvent combinations influence on properties of electrospun nanofibers. The in-vitro and in-vivo degradation studies were performed to evaluate the potential of electrospun PVP/PVA as a tissue engineering scaffold. The solvents used for electrospinning of PVP/PVA nanofibers were ethanol and 90% acetic acid, optimized with central composite design via Design Expert software. NF-2 and NF-35 were selected as optimised nanofiber formulation in acetic acid and ethanol, and their characterization showed diameter of 150-400 nm, tensile strength of 18.3 and 13.1 MPa, respectively. XRD data revealed the amorphous nature, and exhibited hydrophilicity (contact angles: 67.89° and 58.31° for NF-2 and NF-35). Swelling and in-vitro degradability studies displayed extended water retention as well as delayed degradation. FTIR analysis confirmed solvent-independent interactions. Additionally, hemolysis and in-vitro cytotoxicity studies revealed the non-toxic nature of fabricated scaffolds on RBCs and L929 fibroblast cells. Subcutaneous rat implantation assessed tissue response, month-long biodegradation, and biocompatibility through histological analysis of surrounding tissue. Due to its excellent biocompatibility, this porous PVP/PVA nanofiber has great potential for biomedical applications.

9.
Biomed Mater ; 18(3)2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36921352

RESUMEN

The morbidity rate following a surgical procedure increasing rapidly in the cases associated with surgical site infections. Traditional sutures lack the ability to deliver drugs as the incorporation of the drug in their structure would hamper their mechanical properties. To prevent such infections, we developed an extracellular matrix mimicking electrospun nanofibrous yarns of poly-(D,L)-lactic acid and polyvinyl alcohol loaded with vancomycin and ferulic acid, prepared by uniaxial electrospinning technique.In-vitrocharacterization such as scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, tensile strength testing, degradation studies, and antimicrobial studies along within-vivoevaluation done with help of incision wound healing rat model and simultaneous testing of microbial load in the incised tissue. Thein-vitrostudies indicated the nanofiber yarns have size range 200-300 nm with a tensile strength of 7.54 ± 0.58 MPa. The dual drug-loaded yarn showed sustained drug release over a period of 48 h.In-vitrowater uptake and biodegradation data indicated optimum results suitable for suturing applications. Antimicrobial study showed excellent antimicrobial activity against bothS. aureus and E. coli.Results obtained fromin-vivostudy suggested excellent wound healing potential of nanofiber yarns as compared with commercial silk sutures. The histopathological studies confirmed restoring ability of nanofiber yarn to the normal skin structure. Enzyme-linked immunosorbent assay (ELISA) study revealed the downregulation of inflammatory markers i.e. TNF-alpha and IL-6, making nanofibers sutures suitable for surgical wound healing applications. Overall, the present study may conclude that the developed dual drug-loaded nanofiber yarns have excellent potential in surgical wound healing applications.


Asunto(s)
Antiinfecciosos , Nanofibras , Herida Quirúrgica , Ratas , Animales , Nanofibras/química , Escherichia coli , Herida Quirúrgica/tratamiento farmacológico , Cicatrización de Heridas , Antibacterianos/química
10.
Int J Nanomedicine ; 18: 7021-7046, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046236

RESUMEN

Background: Antitumor research aims to efficiently target hepatocarcinoma cells (HCC) for drug delivery. Nanostructured lipid carriers (NLCs) are promising for active tumour targeting. Cell-penetrating peptides are feasible ligands for targeted cancer treatment. Methods: In this study, we optimized gefitinib-loaded NLCs (GF-NLC) for HCC treatment. The NLCs contained cholesterol, oleic acid, Pluronic F-68, and Phospholipon 90G. The NLC surface was functionalized to enhance targeting with the cRGDfK-pentapeptide, which binds to the αvß3 integrin receptor overexpressed on hepatocarcinoma cells. Results: GF-NLC formulation was thoroughly characterized for various parameters using differential scanning calorimetry and X-ray diffraction analysis. In-vitro and in-vivo studies on the HepG2 cell line showed cRGDfK@GF-NLC's superiority over GF-NLC and free gefitinib. cRGDfK@GF-NLC exhibited significantly higher cytotoxicity, growth inhibition, and cellular internalization. Biodistribution studies demonstrated enhanced tumour site accumulation without organ toxicity. The findings highlight cRGDfK@GF-NLC as a highly efficient carrier for targeted drug delivery, surpassing non-functionalized NLCs. These functionalized NLCs offer promising prospects for improving hepatocarcinoma therapy outcomes by specifically targeting HCC cells. Conclusion: Based on these findings, cRGDfK@GF-NLC holds immense potential as a highly efficient carrier for targeted drug delivery of anticancer agents, surpassing the capabilities of non-functionalized NLCs. This research opens up new avenues for effective treatment strategies in hepatocarcinoma.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanoestructuras , Humanos , Portadores de Fármacos/química , Carcinoma Hepatocelular/tratamiento farmacológico , Gefitinib , Distribución Tisular , Neoplasias Hepáticas/tratamiento farmacológico , Nanoestructuras/química , Tamaño de la Partícula , Lípidos/química
11.
Pharmaceutics ; 14(2)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35214006

RESUMEN

Diabetes mellitus is a chronic disease with a high mortality rate and many complications. A non-healing diabetic foot ulcer (DFU) is one the most serious complications, leading to lower-extremity amputation in 15% of diabetic patients. Nanofibers are emerging as versatile wound dressing due to their unique wound healing properties, such as a high surface area to volume ratio, porosity, and ability to maintain a moist wound environment capable of delivering sustained drug release and oxygen supply to a wound. The present study was aimed to prepare and evaluate a polyvinyl alcohol (PVA)-sodium alginate (SA)-silk fibroin (SF)-based multifunctional nanofibrous scaffold loaded with asiaticoside (AT) in diabetic rats. The SEM findings showed that fibers' diameters ranged from 100-200 nm, and tensile strengths ranged from 12.41-16.80 MPa. The crosslinked nanofibers were sustained AT over an extended period. The MTT and scratch assay on HaCat cells confirmed low cytotoxicity and significant cell migration, respectively. Antimicrobial tests revealed an excellent anti-microbial efficacy against P. aeruginosa and S. aureus bacteria. In-vivo study demonstrated better wound healing efficacy in diabetic rats. In addition, the histopathological studies showed its ability to restore the normal structure of the skin. The present study concluded that developed multifunctional nanofibers have a great potential for diabetic wound healing applications.

12.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35337100

RESUMEN

Diabetic foot ulceration is the most distressing complication of diabetes having no standard therapy. Nanofibers are an emerging and versatile nanotechnology-based drug-delivery system with unique wound-healing properties. This study aimed to prepare and evaluate silk-sericin based hybrid nanofibrous mats for diabetic foot ulcer. The nanofibrous mats were prepared by electrospinning using silk sericin mixed with different proportions of polycaprolactone (PCL) and cellulose acetate (CA) loaded with ferulic acid (FA). The in vitro characterizations, such as surface morphology, mechanical properties, swelling behavior, biodegradability, scanning electron microscopy, and drug release were carried out. The SEM images indicated that nanofibers formed with varied diameters, ranging from 100 to 250 nm, and their tensile strength was found to range from 7 to 15 MPa. In vitro release demonstrated that the nanofibers sustained FA release over an extended time of period. In vitro cytotoxicity showed that the nanofibers possessed a lower cytotoxicity in HaCaT cells. The in vivo wound-healing studies demonstrated an excellent wound-healing efficiency of the nanofibers in diabetic rats. Furthermore, the histopathological studies showed the nanofibers' ability to restore the skin's normal structure. Therefore, it was concluded that the prepared silk-sericin-based hybrid nanofibers loaded with FA could be a promising drug-delivery platform for the effective treatment of diabetic foot ulcers.

13.
Int J Nanomedicine ; 17: 6843-6859, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605559

RESUMEN

Introduction: Foot ulceration is one of the most severe and debilitating complications of diabetes, which leads to the cause of non-traumatic lower-extremity amputation in 15-24% of affected individuals. The healing of diabetic foot (DF) is a significant therapeutic problem due to complications from the multifactorial healing process. Electrospun nanofibrous scaffold loaded with various wound dressing materials has excellent wound healing properties due to its multifunctional action. Purpose: This work aimed to develop and characterize chitosan (CS)-polyvinyl alcohol (PVA) blended electrospun multifunctional nanofiber loaded with curcumin (CUR) and zinc oxide (ZnO) to accelerate diabetic wound healing in STZ-induced diabetic rats. Results: In-vitro characterization results revealed that nanofiber was fabricated successfully using the electrospinning technique. SEM results confirmed the smooth surface with web-like fiber nanostructure diameter ranging from 200 - 250 nm. An in-vitro release study confirmed the sustained release of CUR and ZnO for a prolonged time. In-vitro cell-line studies demonstrated significantly low cytotoxicity of nanofiber in HaCaT cells. Anti-bacterial studies demonstrated good anti-bacterial and anti-biofilm activities of nanofiber. In-vivo animal studies demonstrated an excellent wound-healing efficiency of the nanofibers in STZ-induced diabetic rats. Furthermore, the ELISA assay revealed that the optimized nanofiber membrane terminated the inflammatory phases successfully by downregulating the pro-inflammatory cytokines (TNF-α, MMP-2, and MMP-9) in wound healing. In-vitro and in-vivo studies conclude that the developed nanofiber loaded with bioactive material can promote diabetic wound healing efficiently via multifunction action such as the sustained release of bioactive molecules for a prolonged time of duration, proving anti-bacterial/anti-biofilm properties and acceleration of cell migration and proliferation process during the wound healing. Discussion: CUR-ZnO electrospun nanofibers could be a promising drug delivery platform with the potential to be scaled up to treat diabetic foot ulcers effectively.


Asunto(s)
Curcumina , Diabetes Mellitus Experimental , Pie Diabético , Nanofibras , Óxido de Zinc , Animales , Ratas , Antibacterianos/química , Bacterias , Curcumina/farmacología , Preparaciones de Acción Retardada/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Pie Diabético/tratamiento farmacológico , Nanofibras/química , Cicatrización de Heridas , Óxido de Zinc/farmacología , Óxido de Zinc/química , Humanos , Células HaCaT
14.
Int J Biol Macromol ; 176: 376-386, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33561460

RESUMEN

Electrospinning is emerging as a versatile technique nanofibers fabrication because due to their unique properties such as large surface area to volume ratio, porosity and maintaining moist wound environment, the nanofibers are able to deliver sustained drug release and oxygen to the wound for rapid healing of diabetic wound. The present work was aimed to prepare and evaluate silk fibroin-curcumin based nanofiber in combination with polycaprolactone (PCL) and polyvinyl alcohol (PVA) which helped to strengthen the wound healing properties of nanofiber. Silk fibroin is a naturally occurring polymer was selected one polymer for making nanofibrous mat due to its unique properties such as biodegradability, permeability, oxygen supply and maintain moisture content in the wound. SEM results showed diameters of fibers varied in the range between 200 and 350 nm and their tensile strength ranged from 12.41 to 16.80 MP. The nanofibers were causing sustained release of curcumin for many hours. The in-vivo wound healing studies in streptozotocin-induced diabetic mice showed rapid wound healing efficacy as compared to conventional formulations. Furthermore, the histopathological studies evidenced its ability to restore the normal skin structure and histological conditions of tissues. The silk fibroin-based nanofiber wound dressing, therefore appears to be an ideal preparation, in combination with curcumin, because it blends the anti-oxidant, anti-inflammatory properties of curcumin. Therefore, it was concluded that the silk fibroin-based nanofiber loaded with curcumin has great healing potential in diabetic wound.


Asunto(s)
Vendajes , Curcumina , Angiopatías Diabéticas , Fibroínas/química , Nanofibras/química , Poliésteres/química , Alcohol Polivinílico/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacología , Angiopatías Diabéticas/tratamiento farmacológico , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/patología , Femenino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA