RESUMEN
Multiple lines of evidence suggest that plant water-use efficiency (WUE)-the ratio of carbon assimilation to water loss-has increased in recent decades. Although rising atmospheric CO2 has been proposed as the principal cause, the underlying physiological mechanisms are still being debated, and implications for the global water cycle remain uncertain. Here, we addressed this gap using 30-y tree ring records of carbon and oxygen isotope measurements and basal area increment from 12 species in 8 North American mature temperate forests. Our goal was to separate the contributions of enhanced photosynthesis and reduced stomatal conductance to WUE trends and to assess consistency between multiple commonly used methods for estimating WUE. Our results show that tree ring-derived estimates of increases in WUE are consistent with estimates from atmospheric measurements and predictions based on an optimal balancing of carbon gains and water costs, but are lower than those based on ecosystem-scale flux observations. Although both physiological mechanisms contributed to rising WUE, enhanced photosynthesis was widespread, while reductions in stomatal conductance were modest and restricted to species that experienced moisture limitations. This finding challenges the hypothesis that rising WUE in forests is primarily the result of widespread, CO2-induced reductions in stomatal conductance.
Asunto(s)
Carbono/metabolismo , Bosques , Modelos Biológicos , Fotosíntesis/fisiología , Estomas de Plantas/fisiología , Agua/metabolismo , Dióxido de Carbono/metabolismo , Estados UnidosRESUMEN
Loss of biodiversity and degradation of ecosystem services from agricultural lands remain important challenges in the United States despite decades of spending on natural resource management. To date, conservation investment has emphasized engineering practices or vegetative strategies centered on monocultural plantings of nonnative plants, largely excluding native species from cropland. In a catchment-scale experiment, we quantified the multiple effects of integrating strips of native prairie species amid corn and soybean crops, with prairie strips arranged to arrest run-off on slopes. Replacing 10% of cropland with prairie strips increased biodiversity and ecosystem services with minimal impacts on crop production. Compared with catchments containing only crops, integrating prairie strips into cropland led to greater catchment-level insect taxa richness (2.6-fold), pollinator abundance (3.5-fold), native bird species richness (2.1-fold), and abundance of bird species of greatest conservation need (2.1-fold). Use of prairie strips also reduced total water runoff from catchments by 37%, resulting in retention of 20 times more soil and 4.3 times more phosphorus. Corn and soybean yields for catchments with prairie strips decreased only by the amount of the area taken out of crop production. Social survey results indicated demand among both farming and nonfarming populations for the environmental outcomes produced by prairie strips. If federal and state policies were aligned to promote prairie strips, the practice would be applicable to 3.9 million ha of cropland in Iowa alone.
Asunto(s)
Agricultura/métodos , Biodiversidad , Valores Sociales , Animales , Aves , Humanos , Insectos , Iowa , Suelo , Glycine max , Zea maysRESUMEN
PREMISE: Understanding plant hydraulic functioning and water balance during drought has become key in predicting species survival and recovery. However, there are few insightful studies that couple physiological and morphological attributes for many ecosystems, such as the vulnerable Tropical Montane Cloud Forests (TMCF). In this study, we evaluated drought resistance and recovery for saplings for five tree species spanning deciduous to evergreen habits from a Mexican TMCF. METHODS: In drought simulations, water was withheld until plants reached species-specific P50 or P88 values (pressures required to induce a 50 or 88% loss in hydraulic conductivity), then they were rewatered. Drought resistance was considered within the isohydric-anisohydric framework and compared to leaf gas exchange, water status, pressure-volume curves, specific leaf area, and stomatal density. RESULTS: The TMCF species closed stomata well before significant losses in hydraulic conductivity (isohydric). Yet, despite the coordination of these traits, the traits were not useful for predicting the time needed for the species to reach critical hydraulic thresholds. Instead, maximum photosynthetic rates explained these times, reinforcing the linkage between hydraulic and carbon dynamics. Despite their varying hydraulic conductivities, stomatal responses, and times to hydraulic thresholds, 58 of the 60 study plants recovered after the rewatering. The recovery of photosynthesis and stomatal conductance can be explained by the P50 values and isohydry. CONCLUSIONS: This study raises new questions surrounding drought management strategies, recovery processes, and how lethal thresholds are defined. Further studies need to consider the role of water and carbon balance in allowing for both survival and recovery from drought.
Asunto(s)
Sequías , Ecosistema , Bosques , Hojas de la Planta , Estomas de Plantas , Árboles , AguaRESUMEN
Transpiration in humid tropical forests modulates the global water cycle and is a key driver of climate regulation. Yet, our understanding of how tropical trees regulate sap flux in response to climate variability remains elusive. With a progressively warming climate, atmospheric evaporative demand [i.e., vapor pressure deficit (VPD)] will be increasingly important for plant functioning, becoming the major control of plant water use in the twenty-first century. Using measurements in 34 tree species at seven sites across a precipitation gradient in the neotropics, we determined how the maximum sap flux velocity (vmax) and the VPD threshold at which vmax is reached (VPDmax) vary with precipitation regime [mean annual precipitation (MAP); seasonal drought intensity (PDRY)] and two functional traits related to foliar and wood economics spectra [leaf mass per area (LMA); wood specific gravity (WSG)]. We show that, even though vmax is highly variable within sites, it follows a negative trend in response to increasing MAP and PDRY across sites. LMA and WSG exerted little effect on vmax and VPDmax, suggesting that these widely used functional traits provide limited explanatory power of dynamic plant responses to environmental variation within hyper-diverse forests. This study demonstrates that long-term precipitation plays an important role in the sap flux response of humid tropical forests to VPD. Our findings suggest that under higher evaporative demand, trees growing in wetter environments in humid tropical regions may be subjected to reduced water exchange with the atmosphere relative to trees growing in drier climates.
Asunto(s)
Transpiración de Plantas , Árboles , Sequías , Bosques , Presión de Vapor , AguaRESUMEN
RATIONALE: We evaluated the applicability of tree-ring δ13 C and δ18 O values in bulk wood - instead of the more time and lab-consuming α-cellulose δ13 C and δ18 O values, to assess climate and physiological signals across multiple sites and for six tree species along a latitudinal gradient (35°97'N to 45°20'N) of the northeastern United States. METHODS: Wood cores (n = 4 per tree) were sampled from ten trees per species. Cores were cross-dated within and across trees at each site, and for the last 30 years. Seven years, including the driest on record, were selected for this study. The δ13 C and δ18 O values were measured on two of the ten trees from the bulk wood and the α-cellulose. The offsets between materials in δ13 C and δ18 O values were assessed. Correlation and multiple regression analyses were used to evaluate the strength of the climate signal across sites. Finally the relationship between δ13 C and δ18 O values in bulk wood vs α-cellulose was analyzed to assess the consistency of the interpretation, in terms of CO2 assimilation and stomatal conductance, from both materials. RESULTS: We found offsets of 1.1 and 5.6 between bulk and α-cellulose for δ13 C and δ18 O values, respectively, consistent with offset values reported in the literature. Bulk wood showed similar or stronger correlations to climate parameters than α-cellulose for the investigated sites. In particular, temperature and vapor pressure deficit and standard precipitation-evaporation index (SPEI) were the most visible climate signals recorded in δ13 C and δ18 O values, respectively. For most of the species, there was no relationship between δ13 C and δ18 O values, regardless of the wood material considered. CONCLUSIONS: Extraction of α-cellulose was not necessary to detect climate signals in tree rings across the four investigated sites. Furthermore, the physiological information inferred from the dual isotope approach was similar for most of the species regardless of the material considered.
Asunto(s)
Isótopos de Carbono/análisis , Celulosa/química , Clima , Isótopos de Oxígeno/análisis , Madera/química , Carya/química , Celulosa/análisis , Espectrometría de Masas , New England , Pinaceae/química , Quercus/química , Análisis de Regresión , Árboles/química , Agua/química , Madera/análisisRESUMEN
Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems incrementally remove greater quantities of organic matter, which in turn affects soil organic matter and associated carbon and nutrient storage (and hence long-term soil productivity) and off-site impacts. While these consequences have been extensively studied for some crops and sites, the ongoing and impending impacts of biomass removal require management strategies for ensuring that soil properties and functions are sustained for all combinations of crops, soils, sites, climates, and management systems, and that impacts of biomass management (including off-site impacts) are environmentally acceptable. In a changing global environment, knowledge of cumulative impacts will also become increasingly important. Long-term experiments are essential for key crops, soils, and management systems because short-term results do not necessarily reflect long-term impacts, although improved modeling capability may help to predict these impacts. Identification and validation of soil sustainability indicators for both site prescriptions and spatial applications would better inform commercial and policy decisions. In an increasingly inter-related but constrained global context, researchers should engage across inter-disciplinary, inter-agency, and international lines to better ensure the long-term soil productivity across a range of scales, from site to landscape.
Asunto(s)
Agricultura/métodos , Biocombustibles , Conservación de los Recursos Energéticos , Productos Agrícolas , Agricultura/tendencias , Américas , Biomasa , Ecosistema , Agricultura Forestal , Suelo/químicaRESUMEN
Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production-from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.
Asunto(s)
Biocombustibles , Conservación de los Recursos Energéticos/tendencias , Política Ambiental , Agricultura/métodos , Agricultura/tendencias , Américas , Agua Subterránea/química , Ríos/química , Suelo , Agua/química , Ciclo Hidrológico , Movimientos del Agua , Calidad del AguaRESUMEN
The ecophysiology of tropical montane cloud forest (TMCF) trees is influenced by crown-level microclimate factors including regular mist/fog water inputs, and large variations in evaporative demand, which in turn can significantly impact water balance. We investigated the effect of such microclimatic factors on canopy ecophysiology and branch-level water balance in the dry season of a seasonal TMCF in Veracruz, Mexico, by quantifying both water inputs (via foliar uptake, FU) and outputs (day- and night-time transpiration, NT). Measurements of sap flow, stomatal conductance, leaf water potential and pressure-volume relations were obtained in Quercus lanceifolia, a canopy-dominant tree species. Our results indicate that FU occurred 34% of the time and led to the recovery of 9% (24 ± 9.1 L) of all the dry-season water transpired from individual branches. Capacity for FU was independently verified for seven additional common tree species. NT accounted for approximately 17% (46 L) of dry-season water loss. There was a strong correlation between FU and the duration of leaf wetness events (fog and/or rain), as well as between NT and the night-time vapour pressure deficit. Our results show the clear importance of fog and NT for the canopy water relations of Q. lanceifolia.
Asunto(s)
Transpiración de Plantas/fisiología , Quercus/fisiología , Agua/fisiología , Ecosistema , México , Microclima , Hojas de la Planta/fisiología , Estaciones del Año , Árboles , Clima Tropical , Tiempo (Meteorología)RESUMEN
Polylepis trees grow at elevations above the continuous tree line (3000-5000 m a.s.l.) across the Andes. They tolerate extreme environmental conditions, making them sensitive bioindicators of global climate change. Therefore, investigating their ecohydrological role is key to understanding how the water cycle of Andean headwaters could be affected by predicted changes in environmental conditions, as well as ongoing Polylepis reforestation initiatives in the region. We estimate, for the first time, the annual water balance of a mature Polylepis forest (Polylepis reticulata) catchment (3780 m a.s.l.) located in the south Ecuadorian páramo using a unique set of field ecohydrological measurements including gross rainfall, throughfall, streamflow, and xylem sap flow in combination with the characterization of forest and soil features. We also compare the forest water balance with that of a tussock grass (Calamagrostis intermedia) catchment, the dominant páramo vegetation. Annual gross rainfall during the study period (April 2019-March 2020) was 1290.6 mm yr-1. Throughfall in the Polylepis forest represented 61.2 % of annual gross rainfall. Streamflow was the main component of the water balance of the forested site (59.6 %), while its change in soil water storage was negligible (<1 %). Forest evapotranspiration was 54.0 %, with evaporation from canopy interception (38.8 %) more than twice as high as transpiration (15.1 %). The error in the annual water balance of the Polylepis catchment was small (<15 %), providing confidence in the measurements and assumptions used to estimate its components. In comparison, streamflow and evapotranspiration at the grassland site accounted for 63.7 and 36.0 % of the water balance, respectively. Although evapotranspiration was larger in the forest catchment, its water yield was only marginally reduced (<4 %) in relation to the grassland catchment. The substantially higher soil organic matter content in the forest site (47.6 %) compared to the grassland site (31.8 %) suggests that even though Polylepis forests do not impair the hydrological function of high-Andean catchments, their presence contributes to carbon storage in the litter layer of the forest and the underlying soil. These findings provide key insights into the vegetation-watercarbon nexus in high Andean ecosystems, which can serve as a basis for future ecohydrological studies and improved management of páramo natural resources considering changes in land use and global climate.
Asunto(s)
Monitoreo del Ambiente , Bosques , Ecuador , Clima Tropical , Hidrología , Cambio Climático , Suelo/química , Árboles , Altitud , Ciclo Hidrológico , Lluvia , AguaRESUMEN
Polylepis trees occur throughout the Andean mountain region, and it is the tree genus that grows at the highest elevation worldwide. In the humid Andes where moisture is rarely limiting, Polylepis trees must adapt to extreme environmental conditions, especially rapid fluctuations in temperature, ultraviolet radiation and vapor pressure deficit (VPD). However, Polylepis' water-use patterns remain largely unknown despite the importance of understanding their response to microclimate variation to determine their capacity to maintain resilience under future environmental change. We conducted a study in a Polylepis reticulata Kunth forest in the Ecuadorian Andes to evaluate its tree water-use dynamics and to identify the main environmental drivers of transpiration. Tree sap flow was monitored simultaneously with soil volumetric water content (VWC) and microclimate during 2 years for trees growing in forest edge and interior locations. We found that sap flow was primarily controlled by VPD and that VWC exerted a secondary role in driving sap flow dynamics. The highest values for sap flow rates were found when VPD > 0.15 kPa and VCW < 0.73 cm3 cm-3, but these threshold conditions only occurred during brief periods of time and were only found in 11% of our measurements. Moreover, these brief windows of more favorable conditions occurred more frequently in forest edge compared with forest interior locations, resulting in edge trees maintaining 46% higher sap flow compared with interior trees. Our results also suggest that P. reticulata has a low stomatal control of transpiration, as the sap flow did not decline with increasing VPD. This research provides valuable information about the potential impacts of projected future increases in VPD due to climate change on P. reticulata water-use dynamics, which include higher sap flow rates leading to greater transpirational water loss due to this species' poor stomatal control.
Asunto(s)
Árboles , Agua , Árboles/fisiología , Agua/fisiología , Altitud , Rayos Ultravioleta , Transpiración de Plantas/fisiología , Bosques , SueloRESUMEN
Tropical montane cloud forests (TMCFs) are expected to experience more frequent and prolonged droughts over the coming century, yet understanding of TCMF tree responses to moisture stress remains weak compared with the lowland tropics. We simulated a severe drought in a throughfall reduction experiment (TFR) for 2 years in a Peruvian TCMF and evaluated the physiological responses of several dominant species (Clusia flaviflora Engl., Weinmannia bangii (Rusby) Engl., Weinmannia crassifolia Ruiz & Pav. and Prunus integrifolia (C. Presl) Walp). Measurements were taken of (i) sap flow; (ii) diurnal cycles of stem shrinkage, stem moisture variation and water-use; and (iii) intrinsic water-use efficiency (iWUE) estimated from foliar δ13C. In W. bangii, we used dendrometers and volumetric water content (VWC) sensors to quantify daily cycles of stem water storage. In 2 years of sap flow (Js) data, we found a threshold response of water use to vapor pressure deficit vapor pressure deficit (VPD) > 1.07 kPa independent of treatment, though control trees used more soil water than the treatment trees. The daily decline in water use in the TFR trees was associated with a strong reduction in both morning and afternoon Js rates at a given VPD. Soil moisture also affected the hysteresis strength between Js and VPD. Reduced hysteresis under moisture stress implies that TMCFs are strongly dependent on shallow soil water. Additionally, we suggest that hysteresis can serve as a sensitive indicator of environmental constraints on plant function. Finally, 6 months into the experiment, the TFR treatment significantly increased iWUE in all study species. Our results highlight the conservative behavior of TMCF tree water use under severe soil drought and elucidate physiological thresholds related to VPD and its interaction with soil moisture. The observed strongly isohydric response likely incurs a cost to the carbon balance of the tree and reduces overall ecosystem carbon uptake.
Asunto(s)
Ecosistema , Árboles , Árboles/fisiología , Sequías , Agua/fisiología , Bosques , Carbono , SueloRESUMEN
Interdisciplinary knowledge is necessary to achieve sustainable management of natural resources. However, research is still often developed in an exclusively disciplinary manner, hampering the capacity to holistically address environmental issues. This study focuses on páramo, a group of high-elevation ecosystems situated around â¼3000 to â¼5000 m a.s.l. in the Andes from western Venezuela and northern Colombia through Ecuador down to northern Peru, and in the highlands of Panama and Costa Rica in Central America. Páramo is a social-ecological system that has been inhabited and shaped by human activity since â¼10,000 years BP. This system is highly valued for the water-related ecosystem services provided to millions of people because it forms the headwaters of major rivers in the Andean-Amazon region, including the Amazon River. We present a multidisciplinary assessment of peer-reviewed research on the abiotic (physical and chemical), biotic (ecological and ecophysiological), and social-political aspects and elements of páramo water resources. A total of 147 publications were evaluated through a systematic literature review process. We found that thematically 58, 19, and 23 % of the analyzed studies are related to the abiotic, biotic, and social-political aspects of páramo water resources, respectively. Geographically, most publications were developed in Ecuador (71 % of the synthesized publications). From 2010 onwards, the understanding of hydrological processes including precipitation and fog dynamics, evapotranspiration, soil water transport, and runoff generation improved, particularly for the humid páramo of southern Ecuador. Investigations on the chemical quality of water generated by páramo are rare, providing little empirical support to the widespread belief that páramo environments generate water of high quality. Most ecological studies examined the coupling between páramo terrestrial and aquatic environments, but few directly assessed in-stream metabolic and nutrient cycling processes. Studies focused on the connection between ecophysiological and ecohydrological processes influencing páramo water balance are still scarce and mainly related to the dominant vegetation in the Andean páramo, i.e., tussock grass (pajonal). Social-political studies addressed páramo governance and the implementation and significance of water funds and payment for hydrological services. Studies directly addressing water use, access, and governance in páramo communities remain limited. Importantly, we found only a few interdisciplinary studies combining methodologies from at least two disciplines of different nature despite their value in supporting decision-making. We expect this multidisciplinary synthesis to become a milestone to foster interdisciplinary and transdisciplinary dialogue among individuals and entities involved in and committed to the sustainable management of páramo natural resources. Finally, we also highlight key frontiers in páramo water resources research, which in our view need to be addressed in the coming years/decades to achieve this goal.
Asunto(s)
Ecosistema , Recursos Hídricos , Humanos , Suelo , Colombia , Agua , RíosRESUMEN
Twelve small watersheds in central Iowa were used to evaluate the effectiveness of prairie filter strips (PFS) in trapping sediment from agricultural runoff. Four treatments with PFS of different size and location (100% rowcrop, 10% PFS of total watershed area at footslope, 10% PFS at footslope and in contour strips, 20% PFS at footslope and in contour strips) arranged in a balanced incomplete block design were seeded in July 2007. All watersheds were in bromegrass ( L.) for at least 10 yr before treatment establishment. Cropped areas were managed under a no-till, 2-yr corn ( L.)-soybean [ (L.) Merr.] rotation beginning in 2007. About 38 to 85% of the total sediment export from cropland occurred during the early growth stage of rowcrop due to wet field conditions and poor ground cover. The greatest sediment load was observed in 2008 due to the initial soil disturbance and gradually decreased thereafter. The mean annual sediment yield through 2010 was 0.36 and 8.30 Mg ha for the watersheds with and without PFS, respectively, a 96% sediment trapping efficiency for the 4-yr study period. The amount and distribution of PFS had no significant impact on runoff and sediment yield, probably due to the relatively large width (37-78 m) of footslope PFS. The findings suggest that incorporation of PFS at the footslope position of annual rowcrop systems provides an effective approach to reducing sediment loss in runoff from agricultural watersheds under a no-till system.
Asunto(s)
Agricultura/métodos , Contaminación Ambiental/prevención & control , Conservación de los Recursos Naturales , Sedimentos Geológicos/análisis , Iowa , LluviaRESUMEN
Increased drought frequency and severity are a pervasive global threat, yet the capacity of mesic temperate forests to maintain resilience in response to drought remains poorly understood. We deployed a throughfall removal experiment to simulate a once in a century drought in New Hampshire, USA, which coupled with the region-wide 2016 drought, intensified moisture stress beyond that experienced in the lifetimes of our study trees. To assess the sensitivity and threshold dynamics of two dominant northeastern tree genera (Quercus and Pinus), we monitored sap flux density (Js), leaf water potential and gas exchange, growth and intrinsic water-use efficiency (iWUE) for one pretreatment year (2015) and two treatment years (2016-17). Results showed that Js in pine (Pinus strobus L.) declined abruptly at a soil moisture threshold of 0.15 m3 m-3, whereas oak's (Quercus rubra L. and Quercus velutina Lam.) threshold was 0.11 m3 m-3-a finding consistent with pine's more isohydric strategy. Nevertheless, once oaks' moisture threshold was surpassed, Js declined abruptly, suggesting that while oaks are well adapted to moderate drought, they are highly susceptible to extreme drought. The radial growth reduction in response to the 2016 drought was more than twice as great for pine as for oaks (50 vs 18%, respectively). Despite relatively high precipitation in 2017, the oaks' growth continued to decline (low recovery), whereas pine showed neutral (treatment) or improved (control) growth. The iWUE increased in 2016 for both treatment and control pines, but only in treatment oaks. Notably, pines exhibited a significant linear relationship between iWUE and precipitation across years, whereas the oaks only showed a response during the driest conditions, further underscoring the different sensitivity thresholds for these species. Our results provide new insights into how interactions between temperate forest tree species' contrasting physiologies and soil moisture thresholds influence their responses and resilience to extreme drought.
Asunto(s)
Pinus , Quercus , Sequías , Bosques , Árboles , AguaRESUMEN
Many croplands planted to perennial grasses under the Conservation Reserve Program are being returned to crop production, and with potential consequences for water quality. The objective of this study was to quantify the impact of grassland-to-cropland conversion on nitrate-nitrogen (NO3-N) concentrations in soil and shallow groundwater and to assess the potential for perennial filter strips (PFS) to mitigate increases in NO3-N levels. The study, conducted at the Neal Smith National Wildlife Refuge (NSNWR) in central Iowa, consisted of a balanced incomplete block design with 12 watersheds and four watershed-scale treatments having different proportions and topographic positions of PFS planted in native prairie grasses: 100% rowcrop, 10% PFS (toeslope position), 10% PFS (distributed on toe and as contour strips), and 20 PFS (distributed on toe and as contour strips). All treatments were established in fall 2006 on watersheds that were under bromegrass (Bromus L.) cover for at least 10 yr. Nonperennial areas were maintained under a no-till 2-yr corn (Zea mays L.)--soybean [Glycine max. (L.) Merr.] rotation since spring 2007. Suction lysimeter and shallow groundwater wells located at upslope and toeslope positions were sampled monthly during the growing season to determine NO3-N concentration from 2005 to 2008. The results indicated significant increases in NO3-N concentration in soil and groundwater following grassland-to-cropland conversion. Nitrate-nitrogen levels in the vadose zone and groundwater under PFS were lower compared with 100% cropland, with the most significant differences occurring at the toeslope position. During the years following conversion, PFS mitigated increases in subsurface nitrate, but long-term monitoring is needed to observe and understand the full response to land-use conversion.
Asunto(s)
Contaminantes Ambientales/química , Filtración/instrumentación , Nitratos/química , Suelo/química , Agua/química , Agricultura , Monitoreo del Ambiente/métodos , IowaRESUMEN
Stable carbon isotope ratios (δ13C) in tree rings have been widely used to study changes in intrinsic water-use efficiency (iWUE), sometimes with limited consideration of how C-isotope discrimination is affected by tree height and canopy position. Our goals were to quantify the relationships between tree size or tree microenvironment and wood δ13C for eight functionally diverse temperate tree species in northern New England and to better understand the physical and physiological mechanisms underlying these differences. We collected short increment cores in closed-canopy stands and analyzed δ13C in the most recent 5 years of growth. We also sampled saplings in both shaded and sun-exposed environments. In closed-canopy stands, we found strong tree-size effects on δ13C, with 3.7-7.2 of difference explained by linear regression vs height (0.11-0.28 m-1), which in some cases is substantially stronger than the effect reported in previous studies. However, open-grown saplings were often isotopically more similar to large codominant trees than to shade-grown saplings, indicating that light exposure contributes more to the physiological and isotopic differences between small and large trees than does height. We found that in closed-canopy forests, δ13C correlations with diameter at breast height were nonlinear but also strong, allowing a straightforward procedure to correct tree- or stand-scale δ13C-based iWUE chronologies for changing tree size. We demonstrate how to use such data to correct and interpret multi-decadal composite isotope chronologies in both shade-regenerated and open-grown tree cohorts, and we highlight the importance of understanding site history when interpreting δ13C time series.
Asunto(s)
Bosques , Madera/química , Dióxido de Carbono , Isótopos de Carbono/análisis , AguaRESUMEN
We assessed the effects of heater wattage on sap flux estimates from heat dissipation sensors and generated calibrated equations for 1-year-old Eucalyptus grandis Hill ex Maiden trees. We used a total of eight trees ranging from 3 to 6 cm in diameter. Our calibration experiment was performed with a modified tree-cut approach, which allowed us to estimate gravimetric water use manually weighing 20 l buckets every 15 min while sap flux was monitored on each tree. Our results indicate that changes the current supplied to the heaters from 0.15 to 0.25 W does not significantly influence sap flux estimates, as long as the maximum temperature (Tmax) is properly determined for each period when wattage is different, and natural temperature gradients are corrected. Using the original parameters developed for this method, sap flux density and sap flow had an average underestimation of 53%, which according to our analysis had a reduced but relevant correlation with tree diameter (R2 = 0.3, linear regression). These results may allow researchers to supply different currents to heat dissipation sensors to increase sensitivity or to reduce power consumption. They also provide evidence in favor of the correction and use of raw data collected when unwanted changes in wattage occur. The relationship observed between estimation error and tree diameter, while not strongly significant, suggests that diameter plays an important role in the estimation errors that has not been previously considered, and requires further research.
Asunto(s)
Eucalyptus/fisiología , Transpiración de Plantas/fisiología , Agua/fisiología , Transporte Biológico , Calibración , Calor , Tallos de la Planta/fisiología , ÁrbolesRESUMEN
In stands with a broad range of diameters, a small number of very large trees can disproportionately influence stand basal area and transpiration (Et). Sap flow-based Et estimates may be particularly sensitive to large trees due to nonlinear relationships between tree-level water use (Q) and tree diameter at breast height (DBH). Because Q is typically predicted on the basis of DBH and sap flow rates measured in a subset of trees and then summed to obtain Et, we assessed the relative importance of DBH and sap flow variables (sap velocity, Vs, and sapwood depth, Rs) in determining the magnitude of Et and its dependence on large trees in a tropical montane forest ecosystem. Specifically, we developed a data-driven simulation framework to vary the relationship between DBH and Vs and stand DBH distribution and then calculate Q, Et and the proportion of Et contributed by the largest tree in each stand. Our results demonstrate that variation in how Rs is determined in the largest trees can alter estimates up to 26% of Et while variation in how Vs is determined can vary results by up to 132%. Taken together, these results highlight a great need to expand our understanding of water transport in large trees as this hinders our ability to predict water fluxes accurately from stand to catchment scales.
Asunto(s)
Transpiración de Plantas , Árboles/fisiología , Agua/metabolismo , México , Árboles/crecimiento & desarrolloRESUMEN
Tree transpiration is important in the recycling of precipitation in the Amazon and might be negatively affected by El Niño-Southern Oscillation (ENSO)-induced droughts. To investigate the relative importance of soil moisture deficits versus increasing atmospheric demand (VPD) and determine if these drivers exert different controls over tree transpiration during the wet season versus the dry season (DS), we conducted sap flow measurements in a primary lowland tropical forest in eastern Amazon during the most extreme ENSO-induced drought (2015/2016) recorded in the Amazon. We also assessed whether trees occupying different canopy strata contribute equally to the overall stand transpiration (Tstand). Canopy trees were the primary source of Tstand However, subcanopy trees are still important as they transpired an amount similar to other biomes around the globe. Tree water use was higher during the DS, indicating that during extreme drought trees did not reduce transpiration in response to low soil moisture. Photosynthetically active radiation and VPD exerted an overriding effect on water use patterns relative to soil moisture during extreme drought, indicating that light and atmospheric constraints play a critical role in controlling ecosystem fluxes of water. Our study highlights the importance of canopy and subcanopy trees to the regional water balance and highlights the resilience to droughts that these trees show during an extreme ENSO event.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.