Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
An Acad Bras Cienc ; 91(4): e20191031, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31800712

RESUMEN

Diosmin is a flavone glycoside clinically used as the main component of Daflon for the treatment of venous diseases. Several studies demonstrated that this natural compound can induce apoptosis in different tumors. However, isolated diosmin has not been studied regarding its effects on glioblastoma so far. Since glioblastoma is a highly lethal and fast-growing brain tumor, new therapeutic strategies are urgently needed. Herein, we evaluated the role of this flavonoid against glioblastoma cells using in vitro assays. Diosmin significantly reduced the viability of GBM95, GBM02, and U87MG glioblastoma cells, but not of healthy human astrocytes, as verified by MTT assay. Vimentin immunostaining showed that diosmin induced morphological changes in GBM95 and GBM02 cells, making them smaller and more polygonal. Diosmin did not inhibit GBM95 and GBM02 cell proliferation, but it caused DNA fragmentation, as verified by the TUNEL assay, and increased cleaved caspase-3 expression in these cells. In summary, diosmin is able to induce caspase-dependent apoptosis specifically in tumor cells and, therefore, could be considered a promising therapeutic compound against glioblastoma.


Asunto(s)
Apoptosis/efectos de los fármacos , Diosmina/farmacología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/patología , Humanos , Transducción de Señal/efectos de los fármacos
2.
Front Bioeng Biotechnol ; 8: 585896, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195151

RESUMEN

Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, arise from the structural conversion of the monomeric, cellular prion protein (PrPC) into its multimeric scrapie form (PrPSc). These pathologies comprise a group of intractable, rapidly evolving neurodegenerative diseases. Currently, a definitive diagnosis of TSE relies on the detection of PrPSc and/or the identification of pathognomonic histological features in brain tissue samples, which are usually obtained postmortem or, in rare cases, by brain biopsy (antemortem). Over the past two decades, several paraclinical tests for antemortem diagnosis have been developed to preclude the need for brain samples. Some of these alternative methods have been validated and can provide a probable diagnosis when combined with clinical evaluation. Paraclinical tests include in vitro cell-free conversion techniques, such as the real-time quaking-induced conversion (RT-QuIC), as well as immunoassays, electroencephalography (EEG), and brain bioimaging methods, such as magnetic resonance imaging (MRI), whose importance has increased over the years. PrPSc is the main biomarker in TSEs, and the RT-QuIC assay stands out for its ability to detect PrPSc in cerebrospinal fluid (CSF), olfactory mucosa, and dermatome skin samples with high sensitivity and specificity. Other biochemical biomarkers are the proteins 14-3-3, tau, neuron-specific enolase (NSE), astroglial protein S100B, α-synuclein, and neurofilament light chain protein (NFL), but they are not specific for TSEs. This paper reviews the techniques employed for definite diagnosis, as well as the clinical and paraclinical methods for possible and probable diagnosis, both those in use currently and those no longer employed. We also discuss current criteria, challenges, and perspectives for TSE diagnosis. An early and accurate diagnosis may allow earlier implementation of strategies to delay or stop disease progression.

3.
Sci Rep ; 9(1): 12406, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31455808

RESUMEN

Recent studies have proposed that nucleic acids act as potential cofactors for protein aggregation and prionogenesis. By means of sedimentation, transmission electron microscopy, circular dichroism, static and dynamic light scattering, we have studied how RNA can influence the aggregation of the murine recombinant prion protein (rPrP). We find that RNA, independent of its sequence, source and size, modulates rPrP aggregation in a bimodal fashion, affecting both the extent and the rate of rPrP aggregation in a concentration dependent manner. Analogous to RNA-induced liquid-liquid phase transitions observed for other proteins implicated in neurodegenerative diseases, high protein to RNA ratios stimulate rPrP aggregation, while low ratios suppress it. However, the latter scenario also promotes formation of soluble oligomeric aggregates capable of seeding de novo rPrP aggregation. Furthermore, RNA co-aggregates with rPrP and thereby gains partial protection from RNase digestion. Our results also indicate that rPrP interacts with the RNAs with its N-terminus. In summary, this study elucidates the proposed adjuvant role of RNA in prion protein aggregation and propagation, and thus advocates an auxiliary role of the nucleic acids in protein aggregation in general.


Asunto(s)
Proteínas Priónicas/metabolismo , ARN/metabolismo , Animales , Dispersión Dinámica de Luz , Cinética , Ratones , Proteínas Priónicas/química , Proteínas Priónicas/genética , Agregado de Proteínas , ARN/química , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Ribonucleasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA