Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Luminescence ; 39(1): e4681, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38286608

RESUMEN

In this work, different ion co-doped Mg1-x Al2 O4 nanophosphors, coded as M5Cr-5La A, M5Cr-5Cu A, M0.07Si-0.03Ce A, and M0.05Ti-0.05La A, where 5Cr-5La, 5Cr-5Cu, 0.07Si-0.03Ce, and 0.05Ti-0.05La representing the added ions (mol%), were prepared using the sol-gel method. Phase structure, transmission electron microscope (TEM) images, and element feasibility were checked using X-ray diffraction, TEM analysis, and energy dispersive X-ray (EDX) spectroscopy. Their thermoluminescence (TL) response was checked using a 5 Gy γ-test dose. The M0.05Ti-0.05La A sample was found to be best for the TL response with an ~1.1 times response compared with that of the MTS-700 commercial detector. A wide range of dose-responses for the M0.05Ti-0.05La A sample was found up to a 20 Gy γ-dose with the lowest detectable dose of ⁓23 µGy. Photon attenuation parameter results were Zeff ⁓10, which mean that the M0.05Ti-0.05La A sample could be considered as a near tissue equivalent material. Due to this study, the M0.05Ti-0.05La A sample can be considered as a promising detector for application in personal and medical dosimetric monitoring.


Asunto(s)
Iones , Luminiscencia , Iones/química
2.
Environ Res ; 222: 115370, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716804

RESUMEN

Water contamination by reactive dyes is a serious concern for human health and the environment. In this study, we prepared high efficient SnO2/CuO/rGO nanocomposites for reactive dye degradation. For structural analysis of SnO2/CuO/rGO nanocomposites, XRD, UV-Vis DRS, SEM, TEM-EDAX, and XPS analysis were used to characterize the physicochemical properties of the material. The characterization results confirmed great crystallinity, purity, and optical characteristics features. For both Rhodamine B (RhB) and Reactive Red 120 (RR120) degradation processes, SnO2/CuO/rGO nanocomposites were tested for their photocatalytic degradation performance. The SnO2/CuO/rGO nanocomposites have expressed the degradation rate exposed to 99.6% of both RhB and RR120 dyes. The main reason behind the photocatalytic degradation was due to the formation of OH radical's generation by the composite materials. Moreover, the antibacterial properties of synthesized SnO2/CuO/rGO nanocomposites were studied against E. coli, S. aureus, B. subtilis and P. aeroginosa and exhibited good antibacterial activity against the tested bacterial strains. Thus, the synthesized SnO2/CuO/rGO nanocomposites are a promising photocatalyst and antibacterial agent. Furthermore, mechanisms behind the antibacterial effects will be ruled out in near future.


Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Humanos , Escherichia coli , Staphylococcus aureus , Colorantes/química , Nanocompuestos/química , Antibacterianos/farmacología
3.
Molecules ; 28(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37446657

RESUMEN

In this study, silver nanoparticles were synthesized using Cucumis melo L. leaf extract via a green synthesis approach and their potential against diabetes and coccidiosis was tested under in vitro conditions. The phytochemical components in the leaf extract reacted with silver nitrate in solution and yielded C. melo-silver nanoparticles (Cm-AgNPs). The synthesis of AgNPs was confirmed via UV-visible spectroscopy by obtaining a peak at 440 nm. The nanoparticles were characterized by their morphology, crystallinity, and the presence of functional groups. In vitro α-amylase and α-glucosidase inhibition assays were carried out at different concentrations in the range of 20 to 100 µg/mL of Cm-AgNPs. The Cm-AgNPs exhibited enzyme inhibitory activity in a concentration-dependent manner. As the concentration of Cm-AgNPs increased the inhibitory activities were also increased linearly and the highest inhibition was observed at 100 µg/mL. The effectiveness of Cm-AgNPs against Eimeria tenalla was assessed by an in vitro 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay using Madin-Darby bovine kidney (MDBK) cell lines. The results revealed that the viability of the oocysts and further sporulation were decreased with the increased concentration of Cm-AgNPs. The AgNPs synthesized from the C. melo leaf extract have shown promising potential against diabetes and coccidiosis, and they could be used in biomedical applications.


Asunto(s)
Coccidiosis , Cucumis melo , Nanopartículas del Metal , Animales , Bovinos , Humanos , Nanopartículas del Metal/química , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Plata/farmacología
4.
Environ Res ; 209: 112750, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35090872

RESUMEN

Herein, we report a Ceria-graphitic oxide sheets (CeO2-GOS) nanocomposites photo catalyst synthesized by simple and green methods for the degradation of textile effluents and dyes. In the first step, green treated CeO2 NPs were synthesized through a simple organic reduction method. Further, green synthesized CeO2 NPs were anchored with GOS to produce CeO2-GOS nanocomposites by a sol-gel method. The phase morphology and structure of CeO2-GOS nanocomposites was systematically characterized through X-ray diffraction, Raman spectroscopy, zeta potential, Fourier transform infrared spectroscopy (FT-IR), High-Resolution Transmission Electron Microscope (HR-TEM), and X-ray photoelectron spectroscopy (XPS) analysis. Under visible light irradiation, the CeO2-GOS nanocomposites photo catalyst exhibited 83%, 78%, and 70% degradation efficiencies for rhodamine B, methylene blue, and textile effluent, respectively. Due to the synergistic impact of GO, it act as an elastic conductive channel permitting improved charge transport, the fabricated CeO2-GOS nanocomposites showed a significant retort to photo catalysis of rhodamine B, methylene blue, and textile effluent. CeO2-GOS nanocomposites may yield unique insight into the synthesis of green nanocomposites and their application in environmental remediation due to their better photo catalytic activity.


Asunto(s)
Cerio , Grafito , Nanocompuestos , Nanopartículas , Catálisis , Cerio/química , Colorantes/química , Grafito/química , Nanocompuestos/química , Óxidos , Espectroscopía Infrarroja por Transformada de Fourier , Textiles
5.
Chemosphere ; 318: 137928, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36706811

RESUMEN

In this research, we looked at how heterostructure fabrication, phase ratio, and crystalline nature affect the photocatalytic activity of ZnO/ZnFe2O4 nanocomposite for the degradation of Rhodamine B (RhB) dye when exposed to sunlight irradiation. Magnetic ZnO/ZnFe2O4 hybrid nanocomposites were made using a co-precipitation technique. The synthesized hybrid nanocomposite were analyzed using a variety of characterization techniques to understand more about their chemical, crystallinity, and photoactive characteristics. Using UV-Visible spectra, the absorption and photocatalytic efficiency of photocatalysts were investigated. By using XPS and FTIR measurements, the surface composition and functionalization of the produced nanocomposite were observed. The synthesized ZnO/ZnFe2O4 nanocomposites exhibit irregular morphologies, and the average crystallite size is about 30 nm, by the findings of the transmission electron microscope. When exposed to solar light for 90 min, the prepared photocatalysts exceed ZnO nanoparticles in terms of photocatalytic performance by more than 45%. Pseudo-first-order kinetics governs the adsorption of RhB onto nanocomposite surfaces. Finally, the ZnO/ZnFe2O4 nanocomposites were employed for antibacterial treatments against the waterborne pathogens Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus). The outcomes demonstrated that the optimal disinfection efficiency against E. coli and S. aureus germs were 98.6 and 97.4%, respectively, associated with superior cycling durability. Therefore, this work offers a simple and rapid approach to the development of hybrid nanocomposites that could be used to create various photocatalytic and optical materials.


Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Óxido de Zinc , Óxido de Zinc/química , Escherichia coli , Contaminantes Ambientales/química , Staphylococcus aureus , Nanocompuestos/química , Catálisis
6.
Polymers (Basel) ; 15(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38232017

RESUMEN

The properties of a conjugated copolymer (CP), poly[(9,9-Dioctyl-2,7-divinylenefluorenylene)-alt-co-(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene) (PDVF-co-MEH-PV), were investigated in the presence of graphene oxide (GO) and reduced graphene oxide (rGO) using absorption, fluorescence, laser, and time-resolved spectroscopy. CPs are usually dissolved in low-polar solvents. Although GO does not dissolve well, rGO and PDVF-co-MEH-PV dissolve in chloroform due to their oxygen acceptor sites. Hence, we studied rGO/PDVF-co-MEH-PV (CP/rGO), performing all experiments and simulations in chloroform. We performed simulations on PDVF-co-MEH-PV, approximate GO, and rGO using time-dependent density-functional theory calculations to comprehend the molecular dynamics and interactions at the molecular level. The simulation polymer used a tail-truncated oligomer model with up to three monomer units. The simulation and experimental results were in agreement. Further, the PDVF-co-MEH-PV exhibited fluorescence, laser quenching, rGO-mediated laser blinking, and spectral broadening effects when GO and rGO concentrations increased. The experimental and simulation results were compared to provide a plausible mechanism of interaction between PDVF-co-MEH-PV and rGO. We observed that for lower concentrations of rGO, the interaction did not considerably decrease the amplified spontaneous emissions of PDVF-co-MEH-PV. However, the fluorescence of PDVF-co-MEH-PV was considerably quenched at higher concentrations of rGO. These results could be helpful for future applications, such as in sensors, solar cells, and optoelectronic device design. To demonstrate the sensor capability of these composites, a paper-based sensor was designed to detect ethanol and nitrotoluene. An instrumentation setup was proposed that is cheap, reusable, and multifunctional.

7.
Chemosphere ; 319: 138024, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36731667

RESUMEN

In this study, liquid chromatography and mass spectrometry were used to screen the active phytochemicals and analyze antioxidant activity of Croton bonplandianum. In addition, cadmium telluride quantum dots were used to analyze the fluorescence quenching capabilities of Croton bonplandianum plants. UPLC-ESI-MS was used to screen polyphenols in the mass range of 100-2000, with both positive and negative ionizations. Based on molecular weight, 7-Spirostanoldihexoside isomer, Rutin, Quercetin hexoside, Kaempferol-3-O-(p-coumaroyl)-glucoside, Kaempferol, Quercetin, and (E) Catechin-(E) Gallocatechin were tentatively identified. In total, 63.34 mg of polyphenols and 20.36 mg of flavonoids were detected. Lipid peroxidation IC50 values were 212, 38, 56, and 365 g/mL for DPPH, ABTS, and superoxide radicals. Reducing power of the plant material showed the maximum absorbance of 0.56 in 500 µg/mL concentration. Furthermore, the plant extract quenched cadmium telluride quantum dots fluorescence in a dose dependent manner. The results from quenching concluded that Croton bonplandianum with QDs might be used as a drug targeting and delivery nanomaterial.


Asunto(s)
Croton , Quercetina , Quercetina/análisis , Croton/química , Quempferoles/análisis , Flavonoides/análisis , Polifenoles/análisis , Espectrometría de Masas , Antioxidantes/farmacología , Cromatografía Liquida , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Hojas de la Planta/química
8.
Chemosphere ; 334: 138979, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37236279

RESUMEN

The present study, reports a facile approach for the synthesis of FeWO4/FeS2 nanocomposites were demonstrated through hydrothermal method. The surface morphology, crystalline structure, chemical composition, optical properties of the prepared samples was analysed by different various technique. The result observed analysis indicates that, the formation of heterojunction by 2:1wt% of FeWO4/FeS2 nanohybrid has the lowest recombination rate of electron-hole pairs and the least electron transfer resistance. Due to its the broad absorption spectral range and preferable energy band gap, the (2:1) FeWO4/FeS2 nanohybrid photocatalyst exhibits an excellent ability to remove MB dye when exposed to UV-Vis. Light irradiation. Its photocatalytic activity of (2:1) FeWO4/FeS2 nanohybrid is higher than other as prepared samples due to its synergistic effects, enhanced light absorption and high charge carrier separation. Radical trapping experimental result implies that the photo-generated free electrons and hydroxyl radials are essential to degrade the MB dye. Furthermore, a possible future mechanism for FeWO4/FeS2 nanocomposites photocatalytic activity was discussed. Moreover, the recyclability analysis demonstrated that the FeWO4/FeS2 nanocomposites can be recycled multiple times. The enhanced photocatalytic activity of 2:1 FeWO4/FeS2 nanocomposites is promising for the further application of visible light driven photocatalyst in wastewater treatment.


Asunto(s)
Luz , Nanocompuestos , Colorantes , Nanocompuestos/química
9.
Chemosphere ; 323: 138179, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36849022

RESUMEN

In this study, aqueous and methanol extracts of Morinda coreia (MC) leaves were tested for antioxidant and antibacterial activity under in vitro conditions. Phytochemical analysis using UPLC-ESI-MS revealed the presence of phenolics, flavonoids, alkaloids, glycosides, amino acids, proteins, saponins, and tannins. Under in vitro conditions, antioxidant test using DPPH, ABTS, and reducing power demonstrated that the plant leaves play a crucial role in antioxidant activity compared to the commercial antioxidant butylated hydroxytoluene (BHT). The ABTS and DPPH free radical scavenging activities showed that the IC50 values of the M. coreia methanol extract were 26.35 µg/mL and 200.23 µg/mL, respectively. The methanol extract of M. coreia contained higher levels of total phenols and flavonoids and higher free radical scavenging capacity than the aqueous extract. FTIR analysis of the methanol extract showed a substantial number of phenols in the functional groups of M. coreia leaves. The well diffusion assay using the methanolic extract of M. coreia (200 µg/mL) leaves showed antibacterial activity against Pseudomonas aeruginosa (19 ± 0.85 mm), Proteus sp. (20 ± 0.97 mm), Streptococcus sp. (21 ± 1.29 mm), and Enterobacter sp. (17 ± 0.2 mm). Thus, the present study revealed that the antibacterial and antioxidant activity of M. coreia leaf extract was due to the presence of 18 unknown and 15 primary known polyphenols.


Asunto(s)
Antioxidantes , Morinda , Antioxidantes/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Metanol , Espectrometría de Masas en Tándem , Flavonoides/análisis , Antibacterianos/farmacología , Fenoles/análisis , Radicales Libres , Hojas de la Planta/química
10.
Chemosphere ; 340: 139986, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37640213

RESUMEN

In this study, we investigated the deactivation kinetics and mechanism of N-F-TiO2/SiO2 nanopowder as a model photocatalyst for the purpose of facilitating the photocatalytic degradation of acrylonitrile (AN) in aqueous environment. Prior research has already displayed the proficient degradation of AN through the utilization of N-F-TiO2/SiO2 catalysts, revealing a degradation efficiency of 81.2% within a span of 6 min at an initial AN concentration of 10 mg/L. Multiple variables including the initial AN concentration, illumination intensity, and initial pH value were extensively analyzed during the degradation process. The kinetics of photocatalytic degradation of AN, facilitated by the N-F-TiO2/SiO2 photocatalyst, were modeled by fitting the pseudo first-order reaction kinetics to each individual factor. Furthermore, the adverse effect of catalyst poisoning during the photocatalytic breakdown of AN using the N-F-TiO2/SiO2 photocatalyst was analyzed through a range of different techniques including SEM, XPS, BET, XRD, TG, and NH3-TPD. The incorporation of findings from these diverse techniques revealed that, the primary factors contributing to the photocatalyst's poisoning were as follows: (i) During the degradation process, the build-up of intermediate molecules on active sites hindered their functionality, leading to a decrease in the efficiency of the photocatalytic reaction, (ii) Carbonaceous deposits formed when the catalyst's pore structure was obstructed by pollutants or intermediate products that had not undergone timely photocatalytic breakdown and (iii) The persistent erosion of active sites due to hydraulic forces resulted in inadequate performance of the N-F-TiO2/SiO2 photocatalyst in aqueous solutions. A comprehensive analysis of the deactivation kinetics was conducted, deciding in the formulation of a detailed poisoning mechanism for the N-F-TiO2/SiO2 photocatalyst. Additionally, we explored the catalysts regeneration, involving thermal treatment, ultrasonic irradiation, and catalyst reloading. This study not only advances our insight into the waning performance of catalysts in aqueous media but also establishes a conceptual framework for extrapolating analogous deactivation dynamics in other catalysts, grounded in precedent experimental knowledge. This research contributes to the development of a deactivation model for catalysts in the aqueous environment, based on existing experimental research, providing a theoretical framework for understanding the deactivation process of photocatalysts.


Asunto(s)
Acrilonitrilo , Nanopartículas , Flúor , Dióxido de Silicio , Nitrógeno
11.
Int J Biol Macromol ; 241: 124546, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37086766

RESUMEN

A nanohybrid prepared from the lignocellulosic residue is a feasible approach to synthesize blue light emitting fluorescent doped TiO2 quantum dot nanocomposite (C-TiO2 QDs) by microwave techniques using Mandarin orange (Citrus reticulata) peel powder with titanium isopropoxide precursors. With a greater orange peel colloidal medium, the structure of the TiO2-NPs changed from a mixture of rutile and anatase phases to exclusively the anatase phase. The optical and morphological properties of as-prepared C-TiO2 QDs were characterized by HR-TEM, XRD, FT-IR, UV-visible, PL spectra, DLS, and Zeta potential techniques. The reaction condition was optimized by changing substrate composition, pH, and reaction time. C-TiO2 QDs exhibit outstanding stability at pH 7 and remain sustained for at least 180 days without aggregation. As prepared C-TiO2 QDs have distinct emission and excitation activities with an average particle size of 2.8 nm. Cell viability was performed on normal L929 cells, where it showed excellent biocompatibility (<90 %) even at the concentration of 200 µg/mL after 24 h treatment. Additionally, the synthesized C-TiO2 QDs were used with L929 cells as a fluorescent probe for bio-imaging applications. The results revealed that neither of the cell lines' morphologies had significantly changed, proving the biocompatibility of the synthetic C-TiO2 QDs.


Asunto(s)
Citrus sinensis , Puntos Cuánticos , Puntos Cuánticos/química , Microondas , Carbono , Espectroscopía Infrarroja por Transformada de Fourier , Titanio/química , Colorantes Fluorescentes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA