Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Psychiatry ; 25(4): 732-749, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30127471

RESUMEN

Astrocytes orchestrate neural development by powerfully coordinating synapse formation and function and, as such, may be critically involved in the pathogenesis of neurodevelopmental abnormalities and cognitive deficits commonly observed in psychiatric disorders. Here, we report the identification of a subset of cortical astrocytes that are competent for regulating dopamine (DA) homeostasis during postnatal development of the prefrontal cortex (PFC), allowing for optimal DA-mediated maturation of excitatory circuits. Such control of DA homeostasis occurs through the coordinated activity of astroglial vesicular monoamine transporter 2 (VMAT2) together with organic cation transporter 3 and monoamine oxidase type B, two key proteins for DA uptake and metabolism. Conditional deletion of VMAT2 in astrocytes postnatally produces loss of PFC DA homeostasis, leading to defective synaptic transmission and plasticity as well as impaired executive functions. Our findings show a novel role for PFC astrocytes in the DA modulation of cognitive performances with relevance to psychiatric disorders.


Asunto(s)
Astrocitos/metabolismo , Disfunción Cognitiva/metabolismo , Dopamina/metabolismo , Animales , Astrocitos/efectos de los fármacos , Encéfalo/metabolismo , Disfunción Cognitiva/fisiopatología , Dopamina/farmacología , Homeostasis , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
2.
PLoS Genet ; 9(9): e1003812, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086151

RESUMEN

The regulated secretion of peptide hormones, neural peptides and many growth factors depends on their sorting into large dense core vesicles (LDCVs) capable of regulated exocytosis. LDCVs form at the trans-Golgi network, but the mechanisms that sort proteins to this regulated secretory pathway and the cytosolic machinery that produces LDCVs remain poorly understood. Recently, we used an RNAi screen to identify a role for heterotetrameric adaptor protein AP-3 in regulated secretion and in particular, LDCV formation. Indeed, mocha mice lacking AP-3 have a severe neurological and behavioral phenotype, but this has been attributed to a role for AP-3 in the endolysosomal rather than biosynthetic pathway. We therefore used mocha mice to determine whether loss of AP-3 also dysregulates peptide release in vivo. We find that adrenal chromaffin cells from mocha animals show increased constitutive exocytosis of both soluble cargo and LDCV membrane proteins, reducing the response to stimulation. We also observe increased basal release of both insulin and glucagon from pancreatic islet cells of mocha mice, suggesting a global disturbance in the release of peptide hormones. AP-3 exists as both ubiquitous and neuronal isoforms, but the analysis of mice lacking each of these isoforms individually and together shows that loss of both is required to reproduce the effect of the mocha mutation on the regulated pathway. In addition, we show that loss of the related adaptor protein AP-1 has a similar effect on regulated secretion but exacerbates the effect of AP-3 RNAi, suggesting distinct roles for the two adaptors in the regulated secretory pathway.


Asunto(s)
Complejo 3 de Proteína Adaptadora/genética , Subunidades beta de Complejo de Proteína Adaptadora/genética , Citosol/metabolismo , Exocitosis/genética , Hormonas Peptídicas/metabolismo , Complejo 3 de Proteína Adaptadora/metabolismo , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Animales , Glucagón/genética , Glucagón/metabolismo , Insulina/genética , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Lisosomas , Redes y Vías Metabólicas , Ratones , Neuronas/metabolismo , Interferencia de ARN , Factor de Transcripción AP-1/genética
3.
PLoS One ; 18(9): e0291977, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37751424

RESUMEN

Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. HID-1 is a trans-Golgi network (TGN) localized peripheral membrane protein contributing to LDCV formation. There is no information about HID-1 structure or domain architecture, and thus it remains unknown how HID-1 binds to the TGN and performs its function. We report that the N-terminus of HID-1 mediates membrane binding through a myristoyl group with a polybasic amino acid patch but lacks specificity for the TGN. In addition, we show that the C-terminus serves as the functional domain. Indeed, this isolated domain, when tethered to the TGN, can rescue the neuroendocrine secretion and sorting defects observed in HID-1 KO cells. Finally, we report that a point mutation within that domain, identified in patients with endocrine and neurological deficits, leads to loss of function.


Asunto(s)
Vesículas de Núcleo Denso , Hormonas Peptídicas , Humanos , Aminoácidos , Movimiento Celular , Sistemas Neurosecretores
4.
Methods Mol Biol ; 2473: 23-28, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35819756

RESUMEN

The retention using selective hook (RUSH) system enables us to synchronize and visualize the movement of cargoes along the secretory pathway. A fluorescently tagged cargo of interest is retained in the endoplasmic reticulum and released in a biotin-dependent manner. Here, we report a detailed protocol describing the steps necessary to perform RUSH experiments to study secretory granule biogenesis at the trans-Golgi network (TGN).


Asunto(s)
Aparato de Golgi , Red trans-Golgi , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Vías Secretoras , Vesículas Secretoras/metabolismo , Red trans-Golgi/metabolismo
5.
Diabetes ; 70(2): 436-448, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33168621

RESUMEN

Insulin secretory granules (SGs) mediate the regulated secretion of insulin, which is essential for glucose homeostasis. The basic machinery responsible for this regulated exocytosis consists of specific proteins present both at the plasma membrane and on insulin SGs. The protein composition of insulin SGs thus dictates their release properties, yet the mechanisms controlling insulin SG formation, which determine this molecular composition, remain poorly understood. VPS41, a component of the endolysosomal tethering homotypic fusion and vacuole protein sorting (HOPS) complex, was recently identified as a cytosolic factor involved in the formation of neuroendocrine and neuronal granules. We now find that VPS41 is required for insulin SG biogenesis and regulated insulin secretion. Loss of VPS41 in pancreatic ß-cells leads to a reduction in insulin SG number, changes in their transmembrane protein composition, and defects in granule-regulated exocytosis. Exploring a human point mutation, identified in patients with neurological but no endocrine defects, we show that the effect on SG formation is independent of HOPS complex formation. Finally, we report that mice with a deletion of VPS41 specifically in ß-cells develop diabetes due to severe depletion of insulin SG content and a defect in insulin secretion. In sum, our data demonstrate that VPS41 contributes to glucose homeostasis and metabolism.


Asunto(s)
Diabetes Mellitus/metabolismo , Secreción de Insulina/genética , Células Secretoras de Insulina/metabolismo , Vesículas Secretoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Línea Celular , Diabetes Mellitus/genética , Exocitosis/fisiología , Prueba de Tolerancia a la Glucosa , Ratones , Ratones Noqueados , Ratas , Proteínas de Transporte Vesicular/genética
6.
EMBO Mol Med ; 13(5): e13258, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33851776

RESUMEN

Vacuolar protein sorting 41 (VPS41) is as part of the Homotypic fusion and Protein Sorting (HOPS) complex required for lysosomal fusion events and, independent of HOPS, for regulated secretion. Here, we report three patients with compound heterozygous mutations in VPS41 (VPS41S285P and VPS41R662* ; VPS41c.1423-2A>G and VPS41R662* ) displaying neurodegeneration with ataxia and dystonia. Cellular consequences were investigated in patient fibroblasts and VPS41-depleted HeLa cells. All mutants prevented formation of a functional HOPS complex, causing delayed lysosomal delivery of endocytic and autophagic cargo. By contrast, VPS41S285P enabled regulated secretion. Strikingly, loss of VPS41 function caused a cytosolic redistribution of mTORC1, continuous nuclear localization of Transcription Factor E3 (TFE3), enhanced levels of LC3II, and a reduced autophagic response to nutrient starvation. Phosphorylation of mTORC1 substrates S6K1 and 4EBP1 was not affected. In a C. elegans model of Parkinson's disease, co-expression of VPS41S285P /VPS41R662* abolished the neuroprotective function of VPS41 against α-synuclein aggregates. We conclude that the VPS41 variants specifically abrogate HOPS function, which interferes with the TFEB/TFE3 axis of mTORC1 signaling, and cause a neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , Animales , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Caenorhabditis elegans/genética , Células HeLa , Humanos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Enfermedades Neurodegenerativas/genética , Transporte de Proteínas , Proteínas de Transporte Vesicular/metabolismo
8.
Mol Biol Cell ; 31(1): 59-79, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31721635

RESUMEN

Dense-core vesicles (DCVs) are secretory vesicles found in neurons and endocrine cells. DCVs package and release cargoes including neuropeptides, biogenic amines, and peptide hormones. We recently identified the endosome-associated recycling protein (EARP) complex and the EARP-interacting-protein EIPR-1 as proteins important for controlling levels of DCV cargoes in Caenorhabditis elegans neurons. Here we determine the role of mammalian EIPR1 in insulinoma cells. We find that in Eipr1 KO cells, there is reduced insulin secretion, and mature DCV cargoes such as insulin and carboxypeptidase E (CPE) accumulate near the trans-Golgi network and are not retained in mature DCVs in the cell periphery. In addition, we find that EIPR1 is required for the stability of the EARP complex subunits and for the localization of EARP and its association with membranes, but EIPR1 does not affect localization or function of the related Golgi-associated retrograde protein (GARP) complex. EARP is localized to two distinct compartments related to its function: an endosomal compartment and a DCV biogenesis-related compartment. We propose that EIPR1 functions with EARP to control both endocytic recycling and DCV maturation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Células Secretoras de Insulina/metabolismo , Vesículas Secretoras/fisiología , Animales , Fenómenos Biofísicos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , Proteínas Portadoras/fisiología , Línea Celular , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Transporte de Proteínas , Vesículas Secretoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Red trans-Golgi/metabolismo
9.
Mol Biol Cell ; 31(3): 157-166, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31825717

RESUMEN

Regulated secretion of neuropeptides and peptide hormones by secretory granules (SGs) is central to physiology. Formation of SGs occurs at the trans-Golgi network (TGN) where their soluble cargo aggregates to form a dense core, but the mechanisms controlling the sorting of regulated secretory cargoes (soluble and transmembrane) away from constitutively secreted proteins remain unclear. Optimizing the use of the retention using selective hooks method in (neuro-)endocrine cells, we now quantify TGN budding kinetics of constitutive and regulated secretory cargoes. We further show that, by monitoring two cargoes simultaneously, it becomes possible to visualize sorting to the constitutive and regulated secretory pathways in real time. Further analysis of the localization of SG cargoes immediately after budding from the TGN revealed that, surprisingly, the bulk of two studied transmembrane SG cargoes (phogrin and VMAT2) does not sort directly onto SGs during budding, but rather exit the TGN into nonregulated vesicles to get incorporated to SGs at a later step. This differential behavior of soluble and transmembrane cargoes suggests a more complex model of SG biogenesis than anticipated.


Asunto(s)
Células Endocrinas/metabolismo , Vesículas Secretoras/metabolismo , Red trans-Golgi/metabolismo , Animales , Transporte Biológico , Línea Celular , Gránulos Citoplasmáticos/metabolismo , Exocitosis , Aparato de Golgi/metabolismo , Neuropéptidos/metabolismo , Células PC12 , Transporte de Proteínas/fisiología , Ratas , Red trans-Golgi/fisiología
10.
Neuron ; 102(4): 786-800.e5, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31003725

RESUMEN

In contrast to temporal coding by synaptically acting neurotransmitters such as glutamate, neuromodulators such as monoamines signal changes in firing rate. The two modes of signaling have been thought to reflect differences in release by different cells. We now find that midbrain dopamine neurons release glutamate and dopamine with different properties that reflect storage in different synaptic vesicles. The vesicles differ in release probability, coupling to presynaptic Ca2+ channels and frequency dependence. Although previous work has attributed variation in these properties to differences in location or cytoskeletal association of synaptic vesicles, the release of different transmitters shows that intrinsic differences in vesicle identity drive different modes of release. Indeed, dopamine but not glutamate vesicles depend on the adaptor protein AP-3, revealing an unrecognized linkage between the pathway of synaptic vesicle recycling and the properties of exocytosis. Storage of the two transmitters in different vesicles enables the transmission of distinct signals.


Asunto(s)
Complejo 3 de Proteína Adaptadora/metabolismo , Canales de Calcio/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Exocitosis , Ácido Glutámico/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Mesencéfalo/citología , Ratones , Neuronas/metabolismo , Neurotransmisores/metabolismo
11.
Nat Commun ; 9(1): 5205, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510185

RESUMEN

The originally published version of this Article contained errors in Figure 5, for which we apologise. In panel c, the scatter graph was inadvertently replaced with a scatter graph comprising a subset of data points from panel d. Furthermore, the legends to Figures 5c and 5d were inverted. These errors have now been corrected in both the PDF and HTML versions of the Article, and the incorrect version of Fig. 5c is presented in the Author Correction associated with this Article.

12.
Nat Commun ; 9(1): 2069, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29802289

RESUMEN

CaMKII is one of the most studied synaptic proteins, but many critical issues regarding its role in synaptic function remain unresolved. Using a CRISPR-based system to delete CaMKII and replace it with mutated forms in single neurons, we have rigorously addressed its various synaptic roles. In brief, basal AMPAR and NMDAR synaptic transmission both require CaMKIIα, but not CaMKIIß, indicating that, even in the adult, synaptic transmission is determined by the ongoing action of CaMKIIα. While AMPAR transmission requires kinase activity, NMDAR transmission does not, implying a scaffolding role for the CaMKII protein instead. LTP is abolished in the absence of CaMKIIα and/or CaMKIIß and with an autophosphorylation impaired CaMKIIα (T286A). With the exception of NMDAR synaptic currents, all aspects of CaMKIIα signaling examined require binding to the NMDAR, emphasizing the essential role of this receptor as a master synaptic signaling hub.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología , Animales , Sistemas CRISPR-Cas , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Membrana Celular/metabolismo , Femenino , Células HEK293 , Hipocampo/citología , Humanos , Potenciación a Largo Plazo/fisiología , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/fisiología , Fosforilación , Ratas , Receptores de Glutamato/metabolismo , Transducción de Señal/fisiología , Sinapsis/fisiología
13.
Mol Biol Cell ; 28(26): 3870-3880, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29074564

RESUMEN

Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Proteínas de la Membrana/metabolismo , Vesículas Secretoras/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Red trans-Golgi/metabolismo , Animales , Exocitosis , Técnicas de Inactivación de Genes , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Neuropéptidos/metabolismo , Células PC12 , Transporte de Proteínas , Ratas
14.
Neuron ; 83(5): 1051-7, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25155957

RESUMEN

One of the most powerful ways to test the function of a protein is to characterize the consequences of its deletion. In the past, this has involved inactivation of the gene by homologous recombination either in the germline or later through conditional deletion. RNA interference (RNAi) provides an alternative way to knock down proteins, but both of these approaches have their limitations. Recently, the CRISPR/Cas9 system has suggested another way to selectively inactivate genes. We have now tested this system in postmitotic neurons by targeting two well-characterized synaptic proteins, the obligatory GluN1 subunit of the NMDA receptor and the GluA2 subunit of the AMPA receptor. Expression of CRISPR/Cas9 in hippocampal slice cultures completely eliminated NMDA receptor and GluA2 function. CRISPR/Cas9 thus provides a powerful tool to study the function of synaptic proteins.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Humanos , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/genética , Quinoxalinas/farmacología , ARN/genética , ARN/metabolismo , Ratas , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/genética , Sinaptofisina/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Proteína Fluorescente Roja
15.
Dev Cell ; 27(4): 425-37, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24210660

RESUMEN

The regulated release of polypeptides has a central role in physiology, behavior, and development, but the mechanisms responsible for production of the large dense core vesicles (LDCVs) capable of regulated release have remained poorly understood. Recent work has implicated cytosolic adaptor protein AP-3 in the recruitment of LDCV membrane proteins that confer regulated release. However, AP-3 in mammals has been considered to function in the endolysosomal pathway and in the biosynthetic pathway only in yeast. We now find that the mammalian homolog of yeast VPS41, a member of the homotypic fusion and vacuole protein sorting (HOPS) complex that delivers biosynthetic cargo to the endocytic pathway in yeast, promotes LDCV formation through a common mechanism with AP-3, indicating a conserved role for these proteins in the biosynthetic pathway. VPS41 also self-assembles into a lattice, suggesting that it acts as a coat protein for AP-3 in formation of the regulated secretory pathway.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/metabolismo , Exocitosis/fisiología , Biogénesis de Organelos , Vías Secretoras/fisiología , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Células COS , Chlorocebus aethiops , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Proteínas de Unión al ADN/genética , Proteínas de Drosophila , Drosophila melanogaster/genética , Endosomas/metabolismo , Humanos , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Células PC12 , Transporte de Proteínas , Ratas , Vesículas Secretoras/metabolismo , Factores de Transcripción/genética , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Proteínas de Transporte Vesicular/genética
16.
J Cell Biol ; 191(6): 1173-87, 2010 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-21149569

RESUMEN

The regulated release of proteins depends on their inclusion within large dense-core vesicles (LDCVs) capable of regulated exocytosis. LDCVs form at the trans-Golgi network (TGN), but the mechanism for protein sorting to this regulated secretory pathway (RSP) and the cytosolic machinery involved in this process have remained poorly understood. Using an RNA interference screen in Drosophila melanogaster S2 cells, we now identify a small number of genes, including several subunits of the heterotetrameric adaptor protein AP-3, which are required for sorting to the RSP. In mammalian neuroendocrine cells, loss of AP-3 dysregulates exocytosis due to a primary defect in LDCV formation. Previous work implicated AP-3 in the endocytic pathway, but we find that AP-3 promotes sorting to the RSP within the biosynthetic pathway at the level of the TGN. Although vesicles with a dense core still form in the absence of AP-3, they contain substantially less synaptotagmin 1, indicating that AP-3 concentrates the proteins required for regulated exocytosis.


Asunto(s)
Complejo 3 de Proteína Adaptadora/metabolismo , Vías Secretoras/fisiología , Animales , Drosophila/metabolismo , Interferencia de ARN , Sinaptotagmina I/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA